Fundamentals of Digital Image Processing

A Practical Approach with Examples in Matlab

Chris Solomon
School of Physical Sciences, University of Kent, Canterbury, UK

Toby Breckon
School of Engineering, Cranfield University, Bedfordshire, UK

WILEY-BLACKWELL
A John Wiley & Sons, Ltd., Publication
Contents

Preface xi

Using the book website xv

1 Representation 1

1.1 What is an image? 1
 1.1.1 Image layout 1
 1.1.2 Image colour 2

1.2 Resolution and quantization 3
 1.2.1 Bit-plane splicing 4

1.3 Image formats 5
 1.3.1 Image data types 6
 1.3.2 Image compression 7

1.4 Colour spaces 9
 1.4.1 RGB 10
 1.4.1.1 RGB to grey-scale image conversion 11
 1.4.2 Perceptual colour space 12

1.5 Images in Matlab 14
 1.5.1 Reading, writing and querying images 14
 1.5.2 Basic display of images 15
 1.5.3 Accessing pixel values 16
 1.5.4 Converting image types 17

Exercises 18

2 Formation 21

2.1 How is an image formed? 21

2.2 The mathematics of image formation 22
 2.2.1 Introduction 22
 2.2.2 Linear imaging systems 23
 2.2.3 Linear superposition integral 24
 2.2.4 The Dirac delta or impulse function 25
 2.2.5 The point-spread function 28
2.2.6 Linear shift-invariant systems and the convolution integral
2.2.7 Convolution: its importance and meaning
2.2.8 Multiple convolution: N imaging elements in a linear shift-invariant system
2.2.9 Digital convolution
2.3 The engineering of image formation
2.3.1 The camera
2.3.2 The digitization process
2.3.2.1 Quantization
2.3.2.2 Digitization hardware
2.3.2.3 Resolution versus performance
2.3.3 Noise
Exercises

3 Pixels
3.1 What is a pixel?
3.2 Operations upon pixels
3.2.1 Arithmetic operations on images
3.2.1.1 Image addition and subtraction
3.2.1.2 Multiplication and division
3.2.2 Logical operations on images
3.2.3 Thresholding
3.3 Point-based operations on images
3.3.1 Logarithmic transform
3.3.2 Exponential transform
3.3.3 Power-law (gamma) transform
3.3.3.1 Application: gamma correction
3.4 Pixel distributions: histograms
3.4.1 Histograms for threshold selection
3.4.2 Adaptive thresholding
3.4.3 Contrast stretching
3.4.4 Histogram equalization
3.4.4.1 Histogram equalization theory
3.4.4.2 Histogram equalization theory: discrete case
3.4.4.3 Histogram equalization in practice
3.4.5 Histogram matching
3.4.5.1 Histogram-matching theory
3.4.5.2 Histogram-matching theory: discrete case
3.4.5.3 Histogram matching in practice
3.4.6 Adaptive histogram equalization
3.4.7 Histogram operations on colour images
Exercises

Exercises
6.3 Restoration by the inverse Fourier filter 143
6.4 The Wiener-Helstrom Filter 146
6.5 Origin of the Wiener-Helstrom filter 147
6.6 Acceptable solutions to the imaging equation 151
6.7 Constrained deconvolution 151
6.8 Estimating an unknown point-spread function or optical transfer function 154
6.9 Blind deconvolution 156
6.10 Iterative deconvolution and the Lucy–Richardson algorithm 158
6.11 Matrix formulation of image restoration 161
6.12 The standard least-squares solution 162
6.13 Constrained least-squares restoration 163
6.14 Stochastic input distributions and Bayesian estimators 165
6.15 The generalized Gauss–Markov estimator 165

7 Geometry 169

7.1 The description of shape 169
7.2 Shape-preserving transformations 170
7.3 Shape transformation and homogeneous coordinates 171
7.4 The general 2-D affine transformation 173
7.5 Affine transformation in homogeneous coordinates 174
7.6 The Procrustes transformation 175
7.7 Procrustes alignment 176
7.8 The projective transform 180
7.9 Nonlinear transformations 184
7.10 Warping: the spatial transformation of an image 186
7.11 Overdetermined spatial transformations 189
7.12 The piecewise warp 191
7.13 The piecewise affine warp 191
7.14 Warping: forward and reverse mapping 194

8 Morphological processing 197

8.1 Introduction 197
8.2 Binary images: foreground, background and connectedness 197
8.3 Structuring elements and neighbourhoods 198
8.4 Dilation and erosion 200
8.5 Dilation, erosion and structuring elements within Matlab 201
8.6 Structuring element decomposition and Matlab 202
8.7 Effects and uses of erosion and dilation 204
8.7.1 Application of erosion to particle sizing 207
8.8 Morphological opening and closing 209
8.8.1 The rolling-ball analogy 210
8.9 Boundary extraction 212
8.10 Extracting connected components 213
CONTENTS

8.11 Region filling 215
8.12 The hit-or-miss transformation 216
 8.12.1 Generalization of hit-or-miss 219
8.13 Relaxing constraints in hit-or-miss: 'don't care' pixels 220
 8.13.1 Morphological thinning 222
8.14 Skeletonization 222
8.15 Opening by reconstruction 224
8.16 Grey-scale erosion and dilation 227
8.17 Grey-scale structuring elements: general case 227
8.18 Grey-scale erosion and dilation with flat structuring elements 228
8.19 Grey-scale opening and closing 229
8.20 The top-hat transformation 230
8.21 Summary 231
Exercises 233

9 Features 235
 9.1 Landmarks and shape vectors 235
 9.2 Single-parameter shape descriptors 237
 9.3 Signatures and the radial Fourier expansion 239
 9.4 Statistical moments as region descriptors 243
 9.5 Texture features based on statistical measures 246
 9.6 Principal component analysis 247
 9.7 Principal component analysis: an illustrative example 247
 9.8 Theory of principal component analysis: version 1 250
 9.9 Theory of principal component analysis: version 2 251
 9.10 Principal axes and principal components 253
 9.11 Summary of properties of principal component analysis 253
 9.12 Dimensionality reduction: the purpose of principal component analysis 256
 9.13 Principal components analysis on an ensemble of digital images 257
 9.14 Representation of out-of-sample examples using principal component analysis 257
 9.15 Key example: eigenfaces and the human face 259

10 Image Segmentation 263
 10.1 Image segmentation 263
 10.2 Use of image properties and features in segmentation 263
 10.3 Intensity thresholding 265
 10.3.1 Problems with global thresholding 266
 10.4 Region growing and region splitting 267
 10.5 Split-and-merge algorithm 267
 10.6 The challenge of edge detection 270
 10.7 The Laplacian of Gaussian and difference of Gaussians filters 270
 10.8 The Canny edge detector 271