QUANTUM WELLS, WIRES AND DOTS
Theoretical and Computational Physics of Semiconductor Nanostructures

Second Edition

Paul Harrison
The University of Leeds, UK

WILEY-INTERSCIENCE
JOHN WILEY & SONS, LTD
CONTENTS

Preface xv
Acknowledgements xix
About the author xxi
About the book xxiii
Introduction xxv

1 Semiconductors and heterostructures 1
1.1 The mechanics of waves 1
1.2 Crystal structure 4
1.3 The effective mass approximation 6
1.4 Band theory 7
1.5 Heterojunctions 8
1.6 Heterostructures 9
1.7 The envelope function approximation 11
1.8 The reciprocal lattice 12
vii
Contents

2 Solutions to Schrödinger’s equation

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 The infinite well</td>
<td>17</td>
</tr>
<tr>
<td>2.2 In-plane dispersion</td>
<td>17</td>
</tr>
<tr>
<td>2.3 Density of states</td>
<td>21</td>
</tr>
<tr>
<td>2.4 Subband populations</td>
<td>23</td>
</tr>
<tr>
<td>2.5 Finite well with constant mass</td>
<td>26</td>
</tr>
<tr>
<td>2.6 Effective mass mismatch at heterojunctions</td>
<td>31</td>
</tr>
<tr>
<td>2.7 The infinite barrier height and mass limits</td>
<td>36</td>
</tr>
<tr>
<td>2.8 Hermiticity and the kinetic energy operator</td>
<td>38</td>
</tr>
<tr>
<td>2.9 Alternative kinetic energy operators</td>
<td>40</td>
</tr>
<tr>
<td>2.10 Extension to multiple-well systems</td>
<td>42</td>
</tr>
<tr>
<td>2.11 The asymmetric single quantum well</td>
<td>44</td>
</tr>
<tr>
<td>2.12 Addition of an electric field</td>
<td>47</td>
</tr>
<tr>
<td>2.13 The infinite superlattice</td>
<td>48</td>
</tr>
<tr>
<td>2.14 The single barrier</td>
<td>51</td>
</tr>
<tr>
<td>2.15 The double barrier</td>
<td>58</td>
</tr>
<tr>
<td>2.16 Extension to include electric field</td>
<td>60</td>
</tr>
<tr>
<td>2.17 Magnetic fields and Landau quantisation</td>
<td>68</td>
</tr>
<tr>
<td>2.18 In summary</td>
<td>71</td>
</tr>
</tbody>
</table>

3 Numerical solutions

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Shooting method</td>
<td>73</td>
</tr>
<tr>
<td>3.2 Generalised initial conditions</td>
<td>76</td>
</tr>
<tr>
<td>3.3 Practical implementation of the shooting method</td>
<td>79</td>
</tr>
<tr>
<td>3.4 Heterojunction boundary conditions</td>
<td>82</td>
</tr>
<tr>
<td>3.5 The parabolic potential well</td>
<td>83</td>
</tr>
<tr>
<td>3.6 The Pöschl–Teller potential hole</td>
<td>87</td>
</tr>
<tr>
<td>3.7 Convergence tests</td>
<td>88</td>
</tr>
<tr>
<td>3.8 Extension to variable effective mass</td>
<td>89</td>
</tr>
<tr>
<td>3.9 The double quantum well</td>
<td>93</td>
</tr>
<tr>
<td>3.10 Multiple quantum wells and finite superlattices</td>
<td>95</td>
</tr>
<tr>
<td>3.11 Addition of electric field</td>
<td>97</td>
</tr>
<tr>
<td>3.12 Quantum confined Stark effect</td>
<td>97</td>
</tr>
<tr>
<td>3.13 Field–induced anti-crossings</td>
<td>98</td>
</tr>
<tr>
<td>3.14 Symmetry and selection rules</td>
<td>99</td>
</tr>
<tr>
<td>3.15 The Heisenberg uncertainty principle</td>
<td>101</td>
</tr>
<tr>
<td>3.16 Extension to include band non-parabolicity</td>
<td>103</td>
</tr>
</tbody>
</table>
3.17 Poisson’s equation
3.18 Self-consistent Schrödinger–Poisson solution
3.19 Computational implementation
3.20 Modulation doping
3.21 The high-electron-mobility transistor
3.22 Band filling

4 Diffusion
4.1 Introduction
4.2 Theory
4.3 Boundary conditions
4.4 Convergence tests
4.5 Constant diffusion coefficients
4.6 Concentration dependent diffusion coefficient
4.7 Depth dependent diffusion coefficient
4.8 Time dependent diffusion coefficient
4.9 δ-doped quantum wells
4.10 Extension to higher dimensions

5 Impurities
5.1 Donors and acceptors in bulk material
5.2 Binding energy in a heterostructure
5.3 Two-dimensional trial wave function
5.4 Three-dimensional trial wave function
5.5 Variable-symmetry trial wave function
5.6 Inclusion of a central cell correction
5.7 Special considerations for acceptors
5.8 Effective mass and dielectric mismatch
5.9 Band non-parabolicity
5.10 Excited states
5.11 Application to spin-flip Raman spectroscopy
 5.11.1 Diluted magnetic semiconductors
 5.11.2 Spin-flip Raman spectroscopy
5.12 Alternative approach to excited impurity states
5.13 The ground state
5.14 Position dependence
5.15 Excited States
5.16 Impurity occupancy statistics 184

6 Excitons 189

6.1 Excitons in bulk 189
6.2 Excitons in heterostructures 191
6.3 Exciton binding energies 192
6.4 1s exciton 197
6.5 The two-dimensional and three-dimensional limits 202
6.6 Excitons in single quantum wells 207
6.7 Excitons in multiple quantum wells 210
6.8 Stark Ladders 212
6.9 Self-consistent effects 214
6.10 Spontaneous symmetry breaking 215
6.11 2s exciton 217

7 Strained quantum wells, V. D. Jovanović 219

7.1 Stress and strain in bulk crystals 219
7.2 Strain in quantum wells 224
7.3 Strain balancing 227
7.4 Effect on the band profile of quantum wells 230
7.5 The piezoelectric effect 233
7.6 Induced piezoelectric fields in quantum wells 236
7.7 Effect of piezoelectric fields on quantum wells 239

8 Quantum wires and dots 243

8.1 Further confinement 243
8.2 Schrödinger’s equation in quantum wires 246
8.3 Infinitely deep rectangular wires 248
8.4 Simple approximation to a finite rectangular wire 251
8.5 Circular cross-section wire 255
8.6 Quantum boxes 259
8.7 Spherical quantum dots 260
8.8 Non-zero angular momentum states 263
8.9 Approaches to pyramidal dots 264
8.10 Matrix approaches 265
8.11 Finite difference expansions 266
8.12 Density of states 267
9 Carrier scattering

9.1 Fermi's Golden Rule 271
9.2 Phonons 272
9.3 Longitudinal optic phonon scattering of bulk carriers 275
9.4 LO phonon scattering of two-dimensional carriers 283
9.5 Application to conduction subbands 296
9.6 Averaging over carrier distributions 298
9.7 Ratio of emission to absorption 301
9.8 Screening of the LO phonon interaction 302
9.9 Acoustic deformation potential scattering 303
9.10 Application to conduction subbands 309
9.11 Optical deformation potential scattering 310
9.12 Confined and interface phonon modes 313
9.13 Carrier–carrier scattering 314
9.14 Addition of screening 322
9.15 Averaging over an initial state population 324
9.16 Intrasubband versus intersubband 326
9.17 Thermalised distributions 328
9.18 Auger-type intersubband processes 329
9.19 Asymmetric intrasubband processes 330
9.20 Empirical relationships 331
9.21 Carrier–photon scattering 332
9.22 Quantum cascade lasers 338
9.23 Carrier scattering in quantum wires and dots 342

10 Multiband envelope function (k.p) method, Z. Ikonić

10.1 Symmetry, basis states and band structure 345
10.2 Valence band structure and the 6×6 Hamiltonian 347
10.3 4×4 valence band Hamiltonian 350
10.4 Complex band structure 352
10.5 Block-diagonalisation of the Hamiltonian 353
10.6 The valence band in strained cubic semiconductors 355
10.7 Hole subbands in heterostructures 357
10.8 Valence band offset 359
10.9 The layer (transfer matrix) method 361
10.10 Quantum well subbands 365
10.11 The influence of strain 367
10.12 Strained quantum well subbands 368
10.13 Direct numerical methods 368

11 Empirical pseudopotential theory 371
11.1 Principles and Approximations 371
11.2 Elemental Band Structure Calculation 373
11.3 Spin–orbit coupling 381
11.4 Compound Semiconductors 383
11.5 Charge densities 386
11.6 Calculating the effective mass 390
11.7 Alloys 390
11.8 Atomic form factors 392
11.9 Generalisation to a large basis 393
11.10 Spin–orbit coupling within the large basis approach 396
11.11 Computational implementation 398
11.12 Deducing the parameters and application 399
11.13 Isoelectronic impurities in bulk 402
11.14 The electronic structure around point defects 406

12 Microscopic electronic properties of heterostructures 411
12.1 The superlattice unit cell 411
12.2 Application of large basis method to superlattices 415
12.3 Comparison with envelope–function approximation 419
12.4 In-plane dispersion 421
12.5 Interface coordination 422
12.6 Strain-layered superlattices 422
12.7 The superlattice as a perturbation 425
12.8 Application to GaAs/AlAs superlattices 430
12.9 Inclusion of remote bands 432
12.10 The valence band 433
12.11 Computational effort 433
12.12 Superlattice dispersion and the interminiband laser 435
12.13 Addition of electric field 436

13 Application to quantum wires and dots 443
13.1 Recent progress 443
13.2 The quantum-wire unit cell 444
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.3</td>
<td>Confined states</td>
<td>447</td>
</tr>
<tr>
<td>13.4</td>
<td>V-grooved quantum wires</td>
<td>447</td>
</tr>
<tr>
<td>13.5</td>
<td>Along-axis dispersion</td>
<td>448</td>
</tr>
<tr>
<td>13.6</td>
<td>Tiny quantum dots</td>
<td>449</td>
</tr>
<tr>
<td>13.7</td>
<td>Pyramidal quantum dots</td>
<td>451</td>
</tr>
<tr>
<td>13.8</td>
<td>Transport through dot arrays</td>
<td>454</td>
</tr>
<tr>
<td>13.9</td>
<td>Anti-wires and anti-dots</td>
<td>456</td>
</tr>
<tr>
<td></td>
<td>Concluding Remarks</td>
<td>457</td>
</tr>
<tr>
<td></td>
<td>Appendix A: Materials parameters</td>
<td>459</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>461</td>
</tr>
<tr>
<td></td>
<td>Topic Index</td>
<td>477</td>
</tr>
</tbody>
</table>