Smart Material Systems and MEMS: Design and Development Methodologies

Vijay K. Varadan
University of Arkansas, USA

K. J. Vinoy
Indian Institute of Science, Bangalore, India

S. Gopalakrishnan
Indian Institute of Science, Bangalore, India
Contents

Preface xi

About the Authors xiii

PART 1: FUNDAMENTALS 1

1 Introduction to Smart Systems 3
 1.1 Components of a smart system 3
 1.1.1 ‘Smartness’ 6
 1.1.2 Sensors, actuators, transducers 7
 1.1.3 Micro electromechanical systems (MEMS) 7
 1.1.4 Control algorithms 9
 1.1.5 Modeling approaches 10
 1.1.6 Effects of scaling 10
 1.1.7 Optimization schemes 10
 1.2 Evolution of smart materials and structures 11
 1.3 Application areas for smart systems 13
 1.4 Organization of the book 13
 References 15

2 Processing of Smart Materials 17
 2.1 Introduction 17
 2.2 Semiconductors and their processing 17
 2.2.1 Silicon crystal growth from the melt 19
 2.2.2 Epitaxial growth of semiconductors 20
 2.3 Metals and metallization techniques 21
 2.4 Ceramics 22
 2.4.1 Bulk ceramics 22
 2.4.2 Thick films 23
 2.4.3 Thin films 25
 2.5 Silicon micromachining techniques 26
 2.6 Polymers and their synthesis 26
 2.6.1 Classification of polymers 27
 2.6.2 Methods of polymerization 28
 2.7 UV radiation curing of polymers 31
 2.7.1 Relationship between wavelength and radiation energy 31
 2.7.2 Mechanisms of UV curing 32
 2.7.3 Basic kinetics of photopolymerization 33
2.8 Deposition techniques for polymer thin films
2.9 Properties and synthesis of carbon nanotubes
 References

PART 2: DESIGN PRINCIPLES

3 Sensors for Smart Systems
 3.1 Introduction
 3.2 Conductometric sensors
 3.3 Capacitive sensors
 3.4 Piezoelectric sensors
 3.5 Magnetostriective sensors
 3.6 Piezoresistive sensors
 3.7 Optical sensors
 3.8 Resonant sensors
 3.9 Semiconductor-based sensors
 3.10 Acoustic sensors
 3.11 Polymeric sensors
 3.12 Carbon nanotube sensors
 References

4 Actuators for Smart Systems
 4.1 Introduction
 4.2 Electrostatic transducers
 4.3 Electromagnetic transducers
 4.4 Electrodynamice transducers
 4.5 Piezoelectric transducers
 4.6 Electrostrictive transducers
 4.7 Magnetostriective transducers
 4.8 Electrothermal actuators
 4.9 Comparison of actuation schemes
 References

5 Design Examples for Sensors and Actuators
 5.1 Introduction
 5.2 Piezoelectric sensors
 5.3 MEMS IDT-based accelerometers
 5.4 Fiber-optic gyroscopes
 5.5 Piezoresistive pressure sensors
 5.6 SAW-based wireless strain sensors
 5.7 SAW-based chemical sensors
 5.8 Microfluidic systems
 References

PART 3: MODELING TECHNIQUES

6 Introductory Concepts in Modeling
 6.1 Introduction to the theory of elasticity
 6.1.1 Description of motion
 6.1.2 Strain

References
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2.3 2-D Isoparametric plane stress smart composite finite element</td>
<td>192</td>
</tr>
<tr>
<td>8.2.4 Numerical example</td>
<td>194</td>
</tr>
<tr>
<td>8.3 Superconvergent smart thin-walled box beam element</td>
<td>196</td>
</tr>
<tr>
<td>8.3.1 Governing equation for a thin-walled smart composite beam</td>
<td>196</td>
</tr>
<tr>
<td>8.3.2 Finite element formulation</td>
<td>199</td>
</tr>
<tr>
<td>8.3.3 Formulation of consistent mass matrix</td>
<td>201</td>
</tr>
<tr>
<td>8.3.4 Numerical experiments</td>
<td>202</td>
</tr>
<tr>
<td>8.4 Modeling of magnetostrictive sensors and actuators</td>
<td>204</td>
</tr>
<tr>
<td>8.4.1 Constitutive model for a magnetostrictive material (Terfenol-D)</td>
<td>204</td>
</tr>
<tr>
<td>8.4.2 Finite element modeling of composite structures with embedded</td>
<td>205</td>
</tr>
<tr>
<td>magnetostrictive patches</td>
<td></td>
</tr>
<tr>
<td>8.4.3 Numerical examples</td>
<td>209</td>
</tr>
<tr>
<td>8.4.4 Modeling of piezo fibre composite (PFC) sensors/actuators</td>
<td>212</td>
</tr>
<tr>
<td>8.5 Modeling of micro electromechanical systems</td>
<td>215</td>
</tr>
<tr>
<td>8.5.1 Analytical model for capacitive thin-film sensors</td>
<td>216</td>
</tr>
<tr>
<td>8.5.2 Numerical example</td>
<td>218</td>
</tr>
<tr>
<td>8.6 Modeling of carbon nanotubes (CNTs)</td>
<td>219</td>
</tr>
<tr>
<td>8.6.1 Spectral finite element modeling of an MWCNT</td>
<td>222</td>
</tr>
<tr>
<td>References</td>
<td>229</td>
</tr>
</tbody>
</table>

9 Active Control Techniques

9.1 Introduction

9.2 Mathematical models for control theory

9.2.1 Transfer function

9.2.2 State-space modeling

9.3 Stability of control system

9.4 Design concepts and methodology

9.4.1 PD, PI and PID controllers

9.4.2 Eigenstructure assignment technique

9.5 Modal order reduction

9.5.1 Review of available modal order reduction techniques

9.6 Active control of vibration and waves due to broadband excitation

9.6.1 Available strategies for vibration and wave control

9.6.2 Active spectral finite element model (ASEM) for broadband wave control

References

PART 4: FABRICATION METHODS AND APPLICATIONS

10 Silicon Fabrication Techniques for MEMS

10.1 Introduction

10.2 Fabrication processes for silicon MEMS

10.2.1 Lithography

10.2.2 Resists and mask formation

10.2.3 Lift-off technique

10.2.4 Etching techniques

10.2.5 Wafer bonding for MEMS

10.3 Deposition techniques for thin films in MEMS

10.3.1 Metallization techniques

10.3.2 Thermal oxidation for silicon dioxide

10.3.3 CVD of dielectrics

References
10.3.4 Polysilicon film deposition 268
10.3.5 Deposition of ceramic thin films 268
10.4 Bulk micromachining for silicon-based MEMS 268
 10.4.1 Wet etching for bulk micromachining 269
 10.4.2 Etch-stop techniques 269
 10.4.3 Dry etching for micromachining 271
10.5 Silicon surface micromachining 271
 10.5.1 Material systems in sacrificial layer technology 273
10.6 Processing by both bulk and surface micromachining 274
10.7 LIGA process 274
References 278

11 Polymeric MEMS Fabrication Techniques 281
11.1 Introduction 281
11.2 Microstereolithography 282
 11.2.1 Overview of stereolithography 282
 11.2.2 Introduction to microstereolithography 284
 11.2.3 MSL by scanning methods 285
 11.2.4 Projection-type methods of MSL 287
11.3 Micromolding of polymeric 3-D structures 289
 11.3.1 Micro-injection molding 290
 11.3.2 Micro-photomolding 291
 11.3.3 Micro hot-embossing 291
 11.3.4 Micro transfer-molding 291
 11.3.5 Micromolding in capillaries (MIMIC) 292
11.4 Incorporation of metals and ceramics by polymeric processes 293
 11.4.1 Burnout and sintering 293
 11.4.2 Jet molding 293
 11.4.3 Fabrication of ceramic structures with MSL 294
 11.4.4 Powder injection molding 295
 11.4.5 Fabrication of metallic 3-D microstructures 296
 11.4.6 Metal–polymer microstructures 300
11.5 Combined silicon and polymer structures 300
 11.5.1 Architecture combination by MSL 300
 11.5.2 MSL integrated with thick-film lithography 301
 11.5.3 AMANDA process 301
References 302

12 Integration and Packaging of Smart Microsystems 307
12.1 Integration of MEMS and microelectronics 307
 12.1.1 CMOS first process 307
 12.1.2 MEMS first process 307
 12.1.3 Intermediate process 308
 12.1.4 Multichip module 308
12.2 MEMS packaging 310
 12.2.1 Objectives in packaging 311
 12.2.2 Special issues in MEMS packaging 313
 12.2.3 Types of MEMS packages 314
12.3 Packaging techniques 315
 12.3.1 Flip-chip assembly 315
 12.3.2 Ball-grid array 316
12.3.3 Embedded overlay	316
12.3.4 Wafer-level packaging	317
12.4 Reliability and key failure mechanisms	319
12.5 Issues in packaging of Microsystems	321
References	322
13 Fabrication Examples of Smart Microsystems	325
13.1 Introduction	325
13.2 PVDF transducers	325
13.2.1 PVDF-based transducer for structural health monitoring	325
13.2.2 PVDF film for a hydrophone	328
13.3 SAW accelerometer	332
13.4 Chemical and biosensors	336
13.4.1 SAW-based smart tongue	337
13.4.2 CNT-based glucose sensor	339
13.5 Polymeric fabrication of a microfluidic system	342
References	344
14 Structural Health Monitoring Applications	347
14.1 Introduction	347
14.2 Structural health monitoring of composite wing-type structures using magnetostrictive sensors/actuators	349
14.2.1 Experimental study of a through-width delaminated beam specimen	350
14.2.2 Three-dimensional finite element modeling and analysis	352
14.2.3 Composite beam with single smart patch	353
14.2.4 Composite beam with two smart patches	355
14.2.5 Two-dimensional wing-type plate structure	357
14.3 Assessment of damage severity and health monitoring using PZT sensors/actuators	358
14.4 Actuation of DCB specimen under Mode-II dynamic loading	364
14.5 Wireless MEMS–IDT microsensors for health monitoring of structures and systems	365
14.5.1 Description of technology	367
14.5.2 Wireless-telemetry systems	368
References	374
15 Vibration and Noise-Control Applications	377
15.1 Introduction	377
15.2 Active vibration control in a thin-walled box beam	377
15.2.1 Test article and experimental set-up	378
15.2.2 DSP-based vibration controller card	378
15.2.3 Closed-loop feedback vibration control using a PI controller	380
15.2.4 Multi-modal control of vibration in a box beam using eigenstructure assignment	383
15.3 Active noise control of structure-borne vibration and noise in a helicopter cabin	385
15.3.1 Active strut system	387
15.3.2 Numerical simulations	387
References	394
Index	397