Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics

Howard C. Elman David J. Silvester
 Andrew J. Wathen
CONTENTS

0 Models of incompressible fluid flow 1

1 The Poisson equation 10

1.1 Reference problems 11
1.2 Weak formulation 14
1.3 The Galerkin finite element method 17
 1.3.1 Triangular finite elements (R²) 20
 1.3.2 Quadrilateral elements (R²) 22
 1.3.3 Tetrahedral elements (R³) 25
 1.3.4 Brick elements (R³) 26
1.4 Implementation aspects 27
 1.4.1 Triangular element matrices 28
 1.4.2 Quadrilateral element matrices 31
 1.4.3 Assembly of the Galerkin system 33
1.5 Theory of errors 36
 1.5.1 A priori error bounds 38
 1.5.2 A posteriori error bounds 48
1.6 Matrix properties 56
 Problems 61
 Computational exercises 66

2 Solution of discrete Poisson problems 68

2.1 The conjugate gradient method 69
 2.1.1 Convergence analysis 73
 2.1.2 Stopping criteria 75
2.2 Preconditioning 78
2.3 Singular systems are not a problem 83
2.4 The Lanczos and minimum residual methods 84
2.5 Multigrid 88
 2.5.1 Two-grid convergence theory 95
 2.5.2 Extending two-grid to multigrid 101
 Problems 107
 Computational exercises 110

3 The convection–diffusion equation 113

3.1 Reference problems 115
3.2 Weak formulation and the convection term 120
3.3 Approximation by finite elements 123
 3.3.1 The Galerkin finite element method 123
 3.3.2 The streamline diffusion method 126
3.4 Theory of errors 134
 3.4.1 A priori error bounds 134
 3.4.2 A posteriori error bounds 142
3.5 Matrix properties 148
 3.5.1 Computational molecules and Fourier analysis 152
 3.5.2 Analysis of difference equations 156
Discussion and bibliographical notes 161
Problems 163
Computational exercises 164

4 Solution of discrete convection–diffusion problems 166
 4.1 Krylov subspace methods 166
 4.1.1 GMRES 167
 4.1.2 Biorthogonalization methods 172
 4.2 Preconditioning methods and splitting operators 176
 4.2.1 Splitting operators for convection–diffusion systems 178
 4.2.2 Matrix analysis of convergence 181
 4.2.3 Asymptotic analysis of convergence 185
 4.2.4 Practical considerations 190
 4.3 Multigrid 194
 4.3.1 Practical issues 195
 4.3.2 Tools of analysis: smoothing and approximation properties 200
 4.3.3 Smoothing 202
 4.3.4 Analysis 205
Discussion and bibliographical notes 208
Problems 211
Computational exercises 212

5 The Stokes equations 214
 5.1 Reference problems 217
 5.2 Weak formulation 222
 5.3 Approximation using mixed finite elements 224
 5.3.1 Stable rectangular elements \((Q_2-Q_1, Q_2 P_1, Q_2-P_0)\) 229
 5.3.2 Stabilized rectangular elements \((Q_1-P_0, Q_1 Q_1)\) 235
 5.3.3 Triangular elements 245
 5.3.4 Brick and tetrahedral elements 248
 5.4 Theory of errors 249
 5.4.1 A priori error bounds 250
 5.4.2 A posteriori error bounds 262
 5.5 Matrix properties 268
 5.5.1 Stable mixed approximation 270
 5.5.2 Stabilized mixed approximation 273
Discussion and bibliographical notes 277
Problems 280
Computational exercises 283
6 Solution of discrete Stokes problems
 6.1 The preconditioned MINRES method
 6.2 Preconditioning
 6.2.1 General strategies for preconditioning
 6.2.2 Eigenvalue bounds
 6.2.3 Equivalent norms for MINRES
 6.2.4 MINRES convergence analysis
 Discussion and bibliographical notes
 Problems
 Computational exercises
7 The Navier–Stokes equations
 7.1 Reference problems
 7.2 Weak formulation and linearization
 7.2.1 Stability theory and bifurcation analysis
 7.2.2 Nonlinear iteration
 7.3 Mixed finite element approximation
 7.4 Theory of errors
 7.4.1 A priori error bounds
 7.4.2 A posteriori error bounds
 Discussion and bibliographical notes
 Problems
 Computational exercises
8 Solution of discrete Navier–Stokes problems
 8.1 General strategies for preconditioning
 8.2 Approximations to the Schur complement operator
 8.2.1 The pressure convection-diffusion preconditioner
 8.2.2 The least-squares commutator preconditioner
 8.3 Performance and analysis
 8.3.1 Ideal versions of the preconditioners
 8.3.2 Use of iterative methods for subproblems
 8.3.3 Convergence analysis
 8.3.4 Enclosed flow: singular systems are not a problem
 8.3.5 Relation to SIMPLE iteration
 8.4 Nonlinear iteration
 Discussion and bibliographical notes
 Problems
 Computational exercises
Bibliography
Index