SMART ELECTRONIC MATERIALS
Fundamentals and Applications

JASPRIT SINGH
University of Michigan
CONTENTS

PREFACE

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>xi</td>
</tr>
</tbody>
</table>

INTRODUCTION

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SMART MATERIALS: AN INTRODUCTION</td>
<td>xiii</td>
</tr>
<tr>
<td>2</td>
<td>INPUT-OUTPUT DECISION ABILITY</td>
<td>xiv</td>
</tr>
<tr>
<td></td>
<td>2.1 Device based on conductivity changes</td>
<td>xiv</td>
</tr>
<tr>
<td></td>
<td>2.2 Device based on changes in optical response</td>
<td>xv</td>
</tr>
<tr>
<td>3</td>
<td>BIOLOGICAL SYSTEMS: NATURE'S SMART MATERIALS</td>
<td>xix</td>
</tr>
<tr>
<td>4</td>
<td>ROLE OF THIS BOOK</td>
<td>xxii</td>
</tr>
</tbody>
</table>

1 STRUCTURAL PROPERTIES

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>CRYSTALINE MATERIALS</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.2.1 Basic lattice types</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1.2.2 Some important crystal structures</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>1.2.3 Notation to denote planes and points in a lattice: Miller indices</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>1.2.4 Artificial structures: superlattices and quantum wells</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>1.2.5 Surfaces: ideal versus real</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>1.2.6 Interfaces</td>
<td>19</td>
</tr>
<tr>
<td>1.3</td>
<td>DEFECTS IN CRYSTALS</td>
<td>20</td>
</tr>
<tr>
<td>1.4</td>
<td>HETEROSTRUCTURES</td>
<td>23</td>
</tr>
<tr>
<td>1.5</td>
<td>NON-CRYSTALLINE MATERIALS</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>1.5.1 Polycrystalline materials</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>1.5.2 Amorphous and glassy materials</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>1.5.3 Liquid crystals</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>1.5.4 Organic materials</td>
<td>31</td>
</tr>
<tr>
<td>1.6</td>
<td>SUMMARY</td>
<td>31</td>
</tr>
</tbody>
</table>
4 CHARGE TRANSPORT IN MATERIALS 148

4.1 INTRODUCTION 148
4.2 AN OVERVIEW OF ELECTRONIC STATES 149
4.3 TRANSPORT AND SCATTERING 151
4.3.1 Scattering of electrons 154
4.4 MACROSCOPIC TRANSPORT PROPERTIES 162
4.4.1 Velocity--electric field relations in semiconductors 162
4.5 CARRIER TRANSPORT BY DIFFUSION 173
4.5.1 Transport by drift and diffusion: Einstein's relation 175
4.6 IMPORTANT DEVICES BASED ON CONDUCTIVITY CHANGES 178
4.6.1 Field effect transistor 179
4.6.2 Bipolar junction devices 184
4.7 TRANSPORT IN NON-CRYSTALLINE MATERIALS 186
4.7.1 Electron and hole transport in disordered systems 187
4.7.2 Ionic conduction 191
4.8 IMPORTANT NON-CRYSTALLINE ELECTRONIC DEVICES 193
4.8.1 Thin film transistor 193
4.8.2 Gas sensors 195
4.9 SUMMARY 195
4.10 PROBLEMS 199
4.11 FURTHER READING 200
5 LIGHT ABSORPTION AND EMISSION

5.1 **INTRODUCTION**

5.2 **IMPORTANT MATERIAL SYSTEMS**

5.3 **OPTICAL PROCESSES IN SEMICONDUCTORS**
 - 5.3.1 Optical absorption and emission
 - 5.3.2 Charge injection, quasi-Fermi levels, and recombination
 - 5.3.3 Optical absorption, loss, and gain

5.4 **OPTICAL PROCESSES IN QUANTUM WELLS**

5.5 **IMPORTANT SEMICONDUCTOR OPTOELECTRONIC DEVICES**
 - 5.5.1 Light detectors and solar cells
 - 5.5.2 Light emitting diode
 - 5.5.3 Laser diode

5.6 **ORGANIC SEMICONDUCTORS: OPTICAL PROCESSES & DEVICES**
 - 5.6.1 Excitonic state

5.7 **SUMMARY**

5.8 **PROBLEMS**

5.9 **FURTHER READING**

6 DIELECTRIC RESPONSE: POLARIZATION EFFECTS

6.1 **INTRODUCTION**

6.2 **POLARIZATION IN MATERIALS: DIELECTRIC RESPONSE**
 - 6.2.1 Dielectric response: some definitions

6.3 **FERROELECTRIC DIELECTRIC RESPONSE**

6.4 **TAILORING POLARIZATION: PIEZOELECTRIC EFFECT**

6.5 **TAILORING POLARIZATION: PYROELECTRIC EFFECT**

6.6 **DEVICE APPLICATIONS OF POLAR MATERIALS**
 - 6.6.1 Ferroelectric memory
 - 6.6.2 Strain sensor and accelerometer
 - 6.6.3 Ultrasound generation
 - 6.6.4 Infrared detection using pyroelectric devices
7 OPTICAL MODULATION AND SWITCHING

7.1 INTRODUCTION
7.2 LIGHT PROPAGATION IN MATERIALS
7.3 MODULATION OF OPTICAL PROPERTIES
 7.3.1 Electro-optic effect
 7.3.2 Electro-absorption modulation
7.4 OPTICAL MODULATION DEVICES
 7.4.1 Electro-optic modulators
 7.4.2 Interferroelectric modulators
7.5 SUMMARY
7.6 PROBLEMS
7.7 FURTHER READING

8 MAGNETIC EFFECTS IN SOLIDS

8.1 INTRODUCTION
8.2 MAGNETIC MATERIALS
8.3 ELECTROMAGNETIC FIELD MAGNETIC MATERIALS
8.4 PHYSICAL BASIS FOR MAGNETIC PROPERTIES
8.5 COHERENT TRANSPORT: QUANTUM INTERFERENCE
 8.5.1 Aharonov Bohm effect
 8.5.2 Quantum interference in superconducting materials
8.6 DIAMAGNETIC AND PARAMAGNETIC EFFECTS
 8.6.1 Diamagnetic effect
 8.6.2 Paramagnetic effect
 8.6.3 Paramagnetism in the conduction electrons in metals