1 Negative-Refractive-Index Transmission-Line Metamaterials
Ashwin K. Iyer and George V. Eleftheriades

1.1 Introduction
1.1.1 Veselago and the Left-Handed Medium (LHM) 1
1.1.2 Negative Refraction at a Planar Interface 2
1.1.3 Flat Lenses and Focusing 3

1.2 Background
1.2.1 Artificial Dielectrics 4
1.2.2 Negative Permittivity 5
1.2.3 Negative Permeability 7
1.2.4 The First LHM 8
1.2.5 Terminology 11

1.3 Transmission-Line Theory of Negative-Refractive-Index Media 12
1.3.1 Application of the Transmission-Line Theory of Dielectrics to the Synthesis of LHM 18

1.4 Periodically Loaded NRI-TL Metamaterials 21
1.4.1 Dispersion Characteristics 22
1.4.2 Effective Medium Limit 28
1.4.3 Closure of the Stopband: The Impedance-Matched Condition 30
1.4.4 Equivalent NRI-TL Unit Cell in the Effective Medium Limit 33

1.5 Microwave Circuit Simulations 36
1.5.1 Negative Refraction 38
1.5.2 Focusing 39

1.6 Experimental Verification of Focusing 41
2 Microwave Devices and Antennas Using Negative-Refractive-Index Transmission-Line Metamaterials

George V. Eleftheriades

2.1 Introduction
2.2 Fundamental Properties
2.3 Effective Medium Theory
2.4 A Super-Resolving Negative-Refractive-Index Transmission-Line Lens
2.5 Compact and Broadband Phase-Shifting Lines
2.6 Series-Fed Antenna Arrays with Reduced Beam Squinting
2.7 A Broadband Metamaterial Balun in Microstrip
2.8 Broadband Power Combiners Using Zero-Degree Phase-Shifting Lines
2.9 Electrically Small Ring Antenna with Vertical Polarization
2.10 A Leaky-Wave Backward Antenna Radiating its Fundamental Spatial Harmonic
2.11 A High-Directivity Backward NRI/Microstrip Coupler
2.12 Phase-Agile Branch-Line Microstrip Couplers
2.13 Conclusion
Appendix
References

3 Super-Resolving Negative-Refractive-Index Transmission-Line Lenses

Anthony Grbic and George V. Eleftheriades

3.1 The Distributed Dual Transmission Line
3.2 The Periodic Dual Transmission Line
3.3 Interpreting Negative Permittivity and Permeability
3.3.1 Negative Permittivity
3.3.2 Negative Permeability
3.3.3 Combining Negative \(\varepsilon \) and Negative \(\mu \)
3.4 The 2-D Dual Transmission Line
3.4.1 The Generalized 2-D Periodic Electrical Network
3.4.2 Periodic Analysis of the 2-D Dual Transmission Line
3.4.3 The 2-D Dual TL as an Effective Medium
3.5 The Negative-Refractive-Index (NRI) TL Lens
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5.1 The Transmission-Line Implementation of Veselago's NRI Lens</td>
<td>120</td>
</tr>
<tr>
<td>3.5.2 Propagation Characteristics of the TL Mesh</td>
<td>121</td>
</tr>
<tr>
<td>3.5.3 Conditions for "Perfect" Imaging in the NRI-TL Lens</td>
<td>124</td>
</tr>
<tr>
<td>3.6 Reflection and Transmission Through the Lossless NRI-TL Lens</td>
<td>126</td>
</tr>
<tr>
<td>3.6.1 Phase Compensation of Propagating Waves</td>
<td>130</td>
</tr>
<tr>
<td>3.6.2 Growth and Restoration of Evanescent Waves</td>
<td>130</td>
</tr>
<tr>
<td>3.7 The Super-Resolving NRI Transmission-Line Lens</td>
<td>133</td>
</tr>
<tr>
<td>3.7.1 The Effect of Periodicity on Image Resolution and the Growth of</td>
<td>140</td>
</tr>
<tr>
<td>Evanescent Waves</td>
<td></td>
</tr>
<tr>
<td>3.7.2 The Optical Transfer Function of the NRI-TL Lens</td>
<td>141</td>
</tr>
<tr>
<td>3.7.3 The Resolving Capability of a Lossy NRI-TL Lens</td>
<td>144</td>
</tr>
<tr>
<td>3.8 An Experimental NRI-TL Lens</td>
<td>150</td>
</tr>
<tr>
<td>3.9 Characterization of an Experimental NRI-TL Lens</td>
<td>153</td>
</tr>
<tr>
<td>3.10 An Isotropic 3-D TL Metamaterial with a NRI</td>
<td>157</td>
</tr>
<tr>
<td>References</td>
<td>164</td>
</tr>
</tbody>
</table>

4 Gaussian Beam Interactions with Double-Negative (DNG) Metamaterials 171

4.1 Introduction 171
4.2 2-D FDTD Simulator 174
4.3 Normal Incidence Results 178
4.3.1 Flat DNG Lenses 179
4.3.2 Phase Compensator/Beam Translator 186
4.4 Oblique Incidence Results 188
4.5 Goos–Hänchen Effect 192
4.6 Subwavelength Focusing with a Concave DNG Lens 198
4.7 Conclusions 208
References 209

5 Negative Index Lenses 213

5.1 Introduction 213
5.2 Geometric Optics 215
5.2.1 Path Variation Example 221
5.3 Gaussian Optics 223
5.3.1 Single Surface 223
5.3.2 Multiple Surfaces 231
CONTENTS

5.3.3 Thin Lenses
5.4 Aberrations
5.4.1 System Optic Elements
5.4.2 Aperture Stop and Exit Pupil
5.4.3 Focal Points
5.4.4 General and Reference Ray
5.4.5 Optical Path-Length Difference
5.4.6 Expand the Difference
5.4.7 Example: Thin Lenses
References

6 Planar Anisotropic Resonance-Cone Metamaterials
Keith G. Balmain and Andrea A. E. Lütgen
6.1 Introduction
6.2 Homogeneous Anisotropic-Medium Analysis
6.3 Free-Standing Anisotropic-Grid Metamaterial
6.4 Anisotropic Grid Over Infinite Ground
6.5 Anisotropic Grid with Vertical Inductors, Over Infinite Ground
6.6 Conclusions
References

7 Negative Refraction and Subwavelength Imaging in Photonic Crystals
Chiyan Luo and John D. Joannopoulos
7.1 Introduction
7.1.1 Introduction to Photonic Crystals
7.2 Negative Refraction in Photonic Crystals
7.2.1 Analysis of Refraction in Uniform Materials
7.2.2 Analysis of Refraction in Photonic Crystals
7.2.3 Dispersion Contours of 2-D Photonic Crystals
7.2.4 All-Angle Negative Refraction
7.2.5 Negative Refraction in Three-Dimensionally Periodic Systems
7.2.6 Case of Metallic Photonic Crystals
7.2.7 Summary
7.3 Subwavelength Imaging with Photonic Crystals
7.3.1 Veselago–Pendry Left-Handed Lens
7.3.2 Origin of Near-Field Amplification
7.3.3 Photonic-Crystal Superlenses
7.3.4 Numerical Results
References
CONTENTS ix

7.3.4.1 Surface Band Structure 300
7.3.4.2 Transmission Spectrum 301
7.3.5 Image Patterns of a Superlens 302
7.3.6 Discussion 306
7.4 Conclusions 309
References 311

8 Plasmonic Nanowire Metamaterials 313
Andrey K. Sarychev and Vladimir M. Shalaev

8.1 Introduction 313
8.2 Electrodynamics of a Single Metal Nanowire 314
8.3 Conducting Stick Composites: Effective Medium Approach 321
8.4 Conducting Stick Composites: Giant Enhancement of Local Fields 324
8.5 Magnetic Response of Conducting Stick Composites 328
8.6 Planar Nanowire Composites 330
8.7 Conclusions 334
References 335

9 An Overview of Salient Properties of Planar Guided-Wave Structures with Double-Negative (DNG) and Single-Negative (SNG) Layers 339
Andrea Alù and Nader Engheta

9.1 Introduction 340
9.2 Parallel-Plate Waveguides with DNG and SNG Metamaterials 341
9.2.1 Large-Aperture Monomodal Waveguides with ENG–MNG Pairs 343
9.2.2 Waveguiding in Ultra-thin Structures with Lateral Dimension Below Diffraction Limits 346
9.2.3 Power Propagation in DPS–DNG Waveguides 348
9.3 Open Slab Waveguides with DNG Metamaterials 357
9.4 The Contradirectional (Backward) Couplers 365
References 375

10 Dispersion Engineering: The Use of Abnormal Velocities and Negative Index of Refraction to Control Dispersive Effects 381
Mohammad Mojahedi and George V. Eleftheriades

10.1 Introduction 381
10.2 Abnormal Group Velocity 385
10.3 Wave Propagation in a Slab with Negative Index of Refraction 387
10.4 PLTL with an Effective NIR and Negative Group Index 392
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.4.1 General Theory of PLTL Exhibiting Negative Phase Delay</td>
<td>392</td>
</tr>
<tr>
<td>10.4.2 Frequency Domain Simulations</td>
<td>393</td>
</tr>
<tr>
<td>10.4.3 Frequency Domain Measurements</td>
<td>397</td>
</tr>
<tr>
<td>10.4.4 Time Domain Simulations</td>
<td>400</td>
</tr>
<tr>
<td>10.4.4.1 Negative Group Delay</td>
<td>400</td>
</tr>
<tr>
<td>10.4.4.2 Luminal Front Velocity</td>
<td>400</td>
</tr>
<tr>
<td>10.4.4.3 Physical Mechanism Underlying Negative Group Delay</td>
<td>402</td>
</tr>
<tr>
<td>10.4.5 Time-Domain Measurements</td>
<td>404</td>
</tr>
<tr>
<td>10.5 Conclusions</td>
<td>407</td>
</tr>
<tr>
<td>References</td>
<td>408</td>
</tr>
</tbody>
</table>

INDEX

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INDEX</td>
<td>413</td>
</tr>
</tbody>
</table>