INTRODUCTION TO RF PROPAGATION

John S. Seybold, Ph.D.
CONTENTS

Preface

1. Introduction
 1.1 Frequency Designations 1
 1.2 Modes of Propagation 1
 1.2.1 Line-of-Sight Propagation and the Radio Horizon 3
 1.2.2 Non-LOS Propagation 5
 1.2.2.1 Indirect or Obstructed Propagation 6
 1.2.2.2 Tropospheric Propagation 6
 1.2.2.3 Ionospheric Propagation 6
 1.2.3 Propagation Effects as a Function of Frequency 9
 1.3 Why Model Propagation? 10
 1.4 Model Selection and Application 11
 1.4.1 Model Sources 11
 1.5 Summary 12
 References 12
 Exercises 13

2. Electromagnetics and RF Propagation 14
 2.1 Introduction 14
 2.2 The Electric Field 14
 2.2.1 Permittivity 15
 2.2.2 Conductivity 17
 2.3 The Magnetic Field 18
 2.4 Electromagnetic Waves 20
 2.4.1 Electromagnetic Waves in a Perfect Dielectric 22
 2.4.2 Electromagnetic Waves in a Lossy Dielectric or Conductor 22
 2.4.3 Electromagnetic Waves in a Conductor 22
 2.5 Wave Polarization 24
 2.6 Propagation of Electromagnetic Waves at Material Boundaries 25
 2.6.1 Dielectric to Dielectric Boundary 26
Contents

<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6.2 Dielectric-to-Perfect Conductor Boundaries</td>
</tr>
<tr>
<td>2.6.3 Dielectric-to-Lossy Dielectric Boundary</td>
</tr>
<tr>
<td>2.7 Propagation Impairment</td>
</tr>
<tr>
<td>2.8 Ground Effects on Circular Polarization</td>
</tr>
<tr>
<td>2.9 Summary</td>
</tr>
<tr>
<td>References</td>
</tr>
<tr>
<td>Exercises</td>
</tr>
</tbody>
</table>

3. Antenna Fundamentals

<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Introduction</td>
</tr>
<tr>
<td>3.2 Antenna Parameters</td>
</tr>
<tr>
<td>3.2.1 Gain</td>
</tr>
<tr>
<td>3.2.2 Effective Area</td>
</tr>
<tr>
<td>3.2.3 Radiation Pattern</td>
</tr>
<tr>
<td>3.2.4 Polarization</td>
</tr>
<tr>
<td>3.2.5 Impedance and VSWR</td>
</tr>
<tr>
<td>3.3 Antenna Radiation Regions</td>
</tr>
<tr>
<td>3.4 Some Common Antennas</td>
</tr>
<tr>
<td>3.4.1 The Dipole</td>
</tr>
<tr>
<td>3.4.2 Beam Antennas</td>
</tr>
<tr>
<td>3.4.3 Horn Antennas</td>
</tr>
<tr>
<td>3.4.4 Reflector Antennas</td>
</tr>
<tr>
<td>3.4.5 Phased Arrays</td>
</tr>
<tr>
<td>3.4.6 Other Antennas</td>
</tr>
<tr>
<td>3.5 Antenna Polarization</td>
</tr>
<tr>
<td>3.5.1 Cross-Polarization Discrimination</td>
</tr>
<tr>
<td>3.5.2 Polarization Loss Factor</td>
</tr>
<tr>
<td>3.6 Antenna Pointing loss</td>
</tr>
<tr>
<td>3.7 Summary</td>
</tr>
<tr>
<td>References</td>
</tr>
<tr>
<td>Exercises</td>
</tr>
</tbody>
</table>

4. Communication Systems and the Link Budget

<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Introduction</td>
</tr>
<tr>
<td>4.2 Path Loss</td>
</tr>
<tr>
<td>4.3 Noise</td>
</tr>
<tr>
<td>4.4 Interference</td>
</tr>
<tr>
<td>4.5 Detailed Link Budget</td>
</tr>
<tr>
<td>4.5.1 EIRP</td>
</tr>
<tr>
<td>4.5.2 Path Loss</td>
</tr>
<tr>
<td>4.5.3 Receiver Gain</td>
</tr>
<tr>
<td>4.5.4 Link Margin</td>
</tr>
<tr>
<td>4.5.5 Signal-to-Noise Ratio</td>
</tr>
</tbody>
</table>
5. Radar Systems

5.1 Introduction

5.2 The Radar Range Equation

5.3 Radar Measurements
 5.3.1 Range Measurement
 5.3.2 Doppler Measurement
 5.3.3 Angle Measurement
 5.3.4 Signature Measurement

5.4 Clutter
 5.4.1 Area Clutter
 5.4.2 Volume Clutter
 5.4.3 Clutter Statistics

5.5 Atmospheric Impairments

5.6 Summary

References

Exercises

6. Atmospheric Effects

6.1 Introduction

6.2 Atmospheric Refraction
 6.2.1 The Radio Horizon
 6.2.2 Equivalent Earth Radius
 6.2.3 Ducting
 6.2.4 Atmospheric Multipath

6.3 Atmospheric Attenuation

6.4 Loss From Moisture and Precipitation
 6.4.1 Fog and Clouds
 6.4.2 Snow and Dust

6.5 Summary

References

Exercises

7. Near-Earth Propagation Models

7.1 Introduction

7.2 Foliage Models
 7.2.1 Weissberger's Model
 7.2.2 Early ITU Vegetation Model
 7.2.3 Updated ITU Vegetation Model
7.2.3.1 Terrestrial Path with One Terminal in Woodland 138
7.2.3.2 Single Vegetative Obstruction 138

7.3 Terrain Modeling 141
7.3.1 Egli Model 141
7.3.2 Longley–Rice Model 143
7.3.3 ITU Model 144

7.4 Propagation in Built-Up Areas 146
7.4.1 Young Model 146
7.4.2 Okumura Model 146
7.4.3 Hata Model 151
7.4.4 COST 231 Model 152
7.4.5 Lee Model 153
7.4.6 Comparison of Propagation Models for Built-Up Areas 157

7.5 Summary 159
References 160
Exercises 161

8. Fading and Multipath Characterization 163

8.1 Introduction 163
8.2 Ground-Bounce Multipath 164
 8.2.1 Surface Roughness 174
 8.2.2 Fresnel Zones 175
 8.2.3 Diffraction and Huygen’s Principle 179
 8.2.4 Quantifying Diffraction Loss 179
8.3 Large-Scale or Log-Normal Fading 186
8.4 Small-Scale Fading 193
 8.4.1 Delay Spread 194
 8.4.2 Doppler Spread 198
 8.4.3 Channel Modeling 199
 8.4.4 The Probabilistic Nature of Small-Scale Fading 200
8.5 Summary 203
References 205
Exercises 206

9. Indoor Propagation Modeling 208

9.1 Introduction 208
9.2 Interference 208
9.3 The Indoor Environment 209
 9.3.1 Indoor Propagation Effects 209
 9.3.2 Indoor Propagation Modeling 210
CONTENTS

9.3.3 The ITU Indoor Path Loss Model 210
9.3.4 The Log-Distance Path Loss Model 214
9.4 Summary 216
References 216
Exercises 216

10. Rain Attenuation of Microwave and Millimeter Wave Signals 218
10.1 Introduction 218
10.2 Link Budget 219
10.3 Rain Fades 222
 10.3.1 Specific Attenuation Due to Rainfall 222
 10.3.2 The ITU Model 224
 10.3.3 The Crane Global Model 229
 10.3.4 Other Rain Models 234
 10.3.5 Rain Attenuation Model Comparison 234
 10.3.6 Slant Paths 234
10.4 The Link Distance Chart 234
10.5 Availability Curves 237
10.6 Other Precipitation 237
10.7 Cross-Polarization Effects 239
10.8 Summary 239
References 240
Exercises 241
Appendix 10A: Data for Rain Attenuation Models 242

11. Satellite Communications 246
11.1 Introduction 246
11.2 Satellite Orbits 247
11.3 Satellite Operating Frequency 249
11.4 Satellite Path Free-Space Loss 249
11.5 Atmospheric Attenuation 252
11.6 Ionospheric Effects 255
11.7 Rain Fades 255
 11.7.1 ITU Rain Attenuation Model for Satellite Paths 257
 11.7.2 Crane Rain Attenuation Model for Satellite Paths 264
 11.7.3 The DAH Rain Attenuation Model 270
11.8 Antenna Considerations 273
11.9 Noise Temperature 274
 11.9.1 The Hot-Pad Formula 276
 11.9.2 Noise Due to Rain 278
11.10 Summary 279
12. RF Safety

12.1 Introduction 283
12.2 Biological Effects of RF Exposure 285
12.3 CC Guidelines 287
12.4 Antenna Considerations 290
12.5 FCC Computations 292
 12.5.1 Main Beam and Omnidirectional Antenna Analysis 292
 12.5.2 Antenna Directivity 293
12.6 Station Evaluations 297
12.7 Summary 298
References 298
Exercises 299

Appendix A: Review of Probability for Propagation Modeling 301

Index 317