Polarization Engineering for LCD Projection

Michael G. Robinson, Jianmin Chen, and Gary D. Sharp

Colorlink Inc., USA
Contents

Series Editor's Foreword XIII
Preface XV

1 Introduction 1
1.1 The Case for Projection 1
1.2 History and Projection Technology Overview 2
 1.2.1 Cinema Film 2
 1.2.2 CRT-based Projection Systems 3
 1.2.3 Schlieren Optics-based Projector 5
 1.2.4 Microdisplay-based Projection Systems 7
 1.2.5 Other Projection Technologies 16
1.3 Scope of the Book 17

2 Liquid Crystal Projection System Basics 21
2.1 Introduction 21
2.2 Brightness and Color Sensitivity of the Human Eye 22
 2.2.1 Brightness 22
 2.2.2 Brightness Uniformity 24
 2.2.3 Color 24
 2.2.4 White 26
 2.2.5 Color Distinction and Just Noticeable Differences (JNDs) 28
 2.2.6 Contrast 28
 2.2.7 Size, Resolution, Registration, and Distortion 29
 2.2.8 Electronic and Panel-related Metrics 30
2.3 Photometric Measurement 30
2.4 Summary of What Constitutes a "Good" RPTV Display in the Current MarketPlace 30
2.5 System Engineering 30
 2.5.1 Rear-projection Screens 31
 2.5.2 Folding Mirrors 34
<table>
<thead>
<tr>
<th>Contents IX</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.7.3 45° Reflective TN Mode</td>
<td>120</td>
</tr>
<tr>
<td>5.7.4 63.6° Mixed TN (MTN) Mode</td>
<td>121</td>
</tr>
<tr>
<td>5.7.5 90° MTN Mode</td>
<td>123</td>
</tr>
<tr>
<td>5.8 FOV of LCDs</td>
<td>124</td>
</tr>
</tbody>
</table>

6 Retarder Stack Filters

6.1 Introduction

6.2 Principle and Background of RSFs

- 6.2.1 Single Stage Polarization Interference
- 6.2.2 Multilayer Polarization Interference

6.3 RSFs in LC Projection Systems

- 6.3.1 Optical Filters
- 6.3.2 Color Splitters/Combiners

6.4 Design of RSFs

- 6.4.1 Impulse Response of a Birefringent Network
- 6.4.2 Design Methodology
- 6.4.3 Impulse Response to RSF Angular Profile Mapping

6.5 Properties of Retarder Stacks

- 6.5.1 Unitary Jones’ Matrix Representation
- 6.5.2 Properties of Symmetric RSF Designs
- 6.5.3 General Properties of Symmetric RSF Designs

7 System Contrast

7.1 Introduction

7.2 On-axis Contrast

- 7.2.1 Head-on Contrast of LC Mode
- 7.2.2 Normal Incidence Pre- and Post-polarizers

7.3 Off-axis Effects

- 7.3.1 Homeotropic Liquid Crystals
- 7.3.2 Off-axis Property of Sheet Polarizers
- 7.3.3 Geometrical PBS Compensation

7.4 PBS/LCOS Compensation

- 7.4.1 VA LCOS Mode
- 7.4.2 General LCOS Mode
- 7.4.3 Influence of the Reflections from Interfaces on System Contrast

7.5 ANSI Contrast Enhancement

7.6 Skew Ray Compensated Retarder Stack Filters

7.7 Alternative Projection Systems

- 7.7.1 Off-telecentric Wire Grid PBS System
- 7.7.2 Off-axis System

7.8 Overall System Contrast

8 Color Management

8.1 Introduction

8.2 System Color Band Determination

8.3 Color Management in Projection Systems

- 8.3.1 Spatial Color Separation and Recombination
- 8.3.2 Temporal Color Separation
9 Transmissive Three-panel Projection System 217
9.1 Introduction 217
9.2 Brief System Description 217
9.3 System Throughput 219
 9.3.1 Lamp Flux Output, Φ 219
 9.3.2 Illumination Efficiency, η_{ill} 219
 9.3.3 Color Management System Efficiency, η_{cm} 220
 9.3.4 Color Correction Efficiency, η_{cc} 222
 9.3.5 Modulation System Efficiency, η_{m} 223
 9.3.6 Imaging System Efficiency, η_{im} 224
 9.3.7 Total System Lumen Output, Φ_{out} 224
9.4 Contrast 225
 9.4.1 Negative c-plate Compensation 227
 9.4.2 Splayed Negative Birefringent Film Compensation Scheme 227
 9.4.3 Negative o-plate Compensation 230
 9.4.4 Positive o-plate Compensation Scheme 230
 9.4.5 Liquid Crystal Polymer (LCP) Compensation Scheme 233

10 Three-panel Reflective Systems 237
10.1 Introduction 237
10.2 3 \times PBS/X-cube System 238
 10.2.1 Description of Basic Operation 238
 10.2.2 Comparison to Transmissive System 239
 10.2.3 Brightness 240
 10.2.4 Contrast 240
 10.2.5 Systems Upgrades 242
 10.2.6 Alternative PBS Solutions 242
10.3 Polarization Color Filter Systems 247
 10.3.1 The CQ3 Three-PBS Architecture 248
 10.3.2 System Analysis 250
10.4 Three-panel LCOS System Comparison 255

11 Single and Dual Panel LC Projection Systems 257
11.1 Introduction 257
11.2 Generic Color Sequential Single Panel Reflective LC System 257
 11.2.1 System Description 257
 11.2.2 Single Panel LCOS System Throughput 258
 11.2.3 System Contrast 261
 11.2.4 Temporal System Issues 262
11.3 Example Single Panel Color Sequential Systems 267
 11.3.1 Scrolling Color System 267
 11.3.2 Field Sequential Single Panel System 267
11.4 Two-panel Systems 268
 11.4.1 White Color Balance 269
 11.4.2 Color Break-up 269
 11.4.3 Two-panel Architectures 270
11.5 Commercialized Single Panel Projection Systems Based on Spatial Color Separation
 11.5.1 Angular Color Beam Separation with Panel-based Microlens Arrays 273
 11.5.2 Holographic Micro-optic Color Separation 273
 11.5.3 Flat-panel LCD Projection 274

Appendix A 277
Index 281