Andre Moliton

Optoelectronics of Molecules and Polymers

With 229 Illustrations

Springer
Preface by Richard H. Friend ... vii

List of abbreviations ... ix

Introduction .. xi

Part One: Concepts: Electronic and optical processes in organic solids

Chapter I: Band and electronic structures in regular 1-dimensional media ... 3

I An introduction to approximations of weak and strong bonds ... 3

1 Materials with weak bonds ... 3

2 Materials with strong bonds .. 4

II Band Structure in weak bonds ... 6

1 Prior result for zero order approximation .. 6

2 Physical origin of forbidden bands .. 6

3 Simple estimation of the size of the forbidden band 8

III Floquet’s theorem: wavefunctions for strong bonds 9

1 Form of the resulting potential ... 9

2 The form of the wavefunction ... 10

3 Floquet’s theorem: effect of potential periodicity on wavefunction form ... 11

IV A study on energy ... 12

1 Defining equations (with $x = r: 1 - D$) .. 12

2 Calculation of energy for a chain of N atoms 13

3 Additional comments: physical significance of terms ($E_0 - \alpha$) and β; simple calculation of E; and the appearance of allowed and forbidden bands in strong bonds .. 16
Contents

V 1-D crystal and the distorted chain ... 19
 1 AB type crystal .. 19
 2 The distorted chain .. 20
VI Density function and its application, the metal insulator
transition and calculation of E_{relax} 22
 1 State density functions .. 22
 2 Filling up zones and Peierls insulator-metal
transition ... 24
 3 Principle of the calculation of E_{relax} for a distorted
chain .. 25
VII Practical example: calculation of wavefunction energy
levels, orbital density function and band filling for a
regular chain of atoms ... 26
 1 Limits of variation in k ... 26
 2 Representation of energy and the orbital density
function using $N = 8$.. 26
 3 Wavefunction forms for bonding and antibonding
states ... 27
 4 Generalisation regarding atomic chain states 30
VIII Conclusion .. 30

Chapter II: Electron and band structure 33
I Introduction ... 33
II Going from 1-D to 3-D .. 34
 1 3-D General expression of permitted energy 34
 2 Expressions for effective mass, band size and
mobility ... 35
III 3-D covalent crystal from a molecular model: sp^3
hybrid states at nodal atoms .. 36
 1 General notes ... 36
 2 Independent bonds: formation of molecular
orbitals ... 38
 3 Coupling of molecular orbitals and band
formation ... 40
IV Band theory limits and the origin of levels and bands
from localised states .. 41
 1 Influence of defaults on evolution of band
structure and the introduction of ‘localised levels’ 41
 2 The effects of electronic repulsions, Hubbard’s
bands and the insulator-metal transition 43
 3 Effect of geometrical disorder and Anderson
localisation ... 47
V Conclusion .. 57
Chapter III: Electron and band structures of 'perfect' organic solids

I Introduction: organic solids
1 Context
2 Generalities
3 Definition of conjugated materials: an aide-mémoire for physicians and electricians

II Electronic structure of organic intrinsic solids: π-conjugated polymers
1 Degenerate π-conjugated polymers
2 Band scheme for a non-degenerate π-conjugated polymer: poly(para-phenylene)

III Electronic structure of organic intrinsic solids: small molecules
1 Evolution of energy levels in going from an isolated chain to a system of solid state condensed molecules
2 Energy level distribution in Alq3
3 Fullerene electronic levels and states

IV Conclusion: energy levels and electron transport

Chapter IV: Electron and band structures of 'real' organic solids

I Introduction: 'real' organic solids

II Lattice-charge coupling—polarons
1 Introduction
2 Polarons
3 Model of molecular crystals
4 Energy spectrum of small polaron
5 Polarons in π-conjugated polymers
6 How do we cross from polaron-exciton to polaron?
7 Degenerate π-conjugated polymers and solitons

III Towards a complete band scheme
1 Which effects can intervene?
2 Complete band scheme accumulating different possible effects
3 Alq3 and molecular crystals

IV Conclusion

Chapter V: Conduction in delocalised, localised and polaronic states

I Introduction

II General theories of conduction in delocalised states
1 General results of conductivity in a real crystal: limits of classical theories
2 Electrical conduction in terms of mobilities and the Kubo–Greenwood relationship: reasoning in reciprocal space and energy space for delocalised states .. 101

III Conduction in delocalised band states: degenerate and non-degenerate organic solids 103
1 Degenerate systems .. 103
2 Non-degenerate systems: limits of applicability of the conduction theory in bands of delocalised states for systems with large or narrow bands (mobility condition) .. 105

IV Conduction in localised state bands 109
1 System 1: Non-degenerated regime; conductivity in the tail band .. 110
2 System 2: degenerate regime; conductivity in deep localised states .. 111

V Transport mechanisms with polarons 116
1 Displacements in small polaron bands and displacements by hopping .. 116
2 Characteristics of hopping by small polarons 117
3 Precisions for the ‘semi-classical’ theory: transition probabilities .. 120
4 Relationships for continuous conductivity through polaron transport .. 122
5 Conduction in 3D in π-conjugated polymers 124

VI Other envisaged transport mechanisms 128
1 Sheng’s granular metal model 128
2 Efros–Shklovskii’s model from Coulombic effects .. 128
3 Conduction by hopping from site to site in a percolation pathway .. 128
4 Kaiser’s model for conduction in a heterogeneous structure .. 129

VII Conclusion: real behaviour 129
1 A practical guide to conducting polymers 129
2 Temperature dependence analysed using the parameter \(w = -\left(\partial \ln \rho / \partial \ln T\right) \) .. 131

Chapter VI: Electron transport properties 133
I Introduction ... 133
II Basic mechanisms .. 133
1 Injection levels .. 133
2 Three basic mechanisms 134
III Process A: various (emission) currents produced by electrodes .. 135
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Rectifying contact (blocking metal → insulator)</td>
<td>135</td>
</tr>
<tr>
<td>2 Thermoelectronic emission (T ≠ 0; E_u = 0)</td>
<td>136</td>
</tr>
<tr>
<td>3 Field effect emission (Shottky): E_a is ‘medium intense’</td>
<td>136</td>
</tr>
<tr>
<td>4 Tunnelling effect emissions and Fowler–Nordheim’s equation</td>
<td>137</td>
</tr>
<tr>
<td>IV Process B (simple injection): ohmic contact and current</td>
<td>138</td>
</tr>
<tr>
<td>1 Ohmic contact (electron injection)</td>
<td>138</td>
</tr>
<tr>
<td>2 The space charge limited current law and saturation current (J_s) for simple injection in insulator without traps</td>
<td>139</td>
</tr>
<tr>
<td>3 Transitions between regimes</td>
<td>143</td>
</tr>
<tr>
<td>4 Insulators with traps and characteristics of trap levels</td>
<td>144</td>
</tr>
<tr>
<td>5 Expression for current density due to one carrier type (J_sp) with traps at one discreet level (E_t); effective mobility</td>
<td>147</td>
</tr>
<tr>
<td>6 Deep level traps distributed according to Gaussian or exponential laws</td>
<td>151</td>
</tr>
<tr>
<td>V Double injection and volume controlled current: mechanism C in Figure VI-2</td>
<td>154</td>
</tr>
<tr>
<td>1 Introduction: differences in properties of organic and inorganic solids</td>
<td>154</td>
</tr>
<tr>
<td>2 Fundamental equations for planar double injection (two carrier types) when both currents are limited by space charge: form of resulting current J_{VCC} (no trap nor recombination centres)</td>
<td>155</td>
</tr>
<tr>
<td>3 Applications</td>
<td>157</td>
</tr>
<tr>
<td>VI The particular case of conduction by the Poole–Frenkel effect</td>
<td>159</td>
</tr>
<tr>
<td>1 Coulombic traps</td>
<td>160</td>
</tr>
<tr>
<td>2 Conduction due to Poole-Frenkel effect (as opposed to Schottky effect)</td>
<td>160</td>
</tr>
</tbody>
</table>

Chapter VII: Optical processes in molecular and macromolecular solids

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Introduction</td>
<td>163</td>
</tr>
<tr>
<td>II Matrix effects due to insertion of atoms with incomplete internal electronic levels</td>
<td>164</td>
</tr>
<tr>
<td>1 Electronic configuration of transition elements and rare earths</td>
<td>164</td>
</tr>
<tr>
<td>2 Incorporation of transition metals and rare earths into dielectric or a semiconductor matrix: effects on energy levels</td>
<td>165</td>
</tr>
</tbody>
</table>
Part Two: Components: OLEDs, photovoltaic cells and electro-optical modulators

Chapter VIII: Fabrication and characterisation of molecular and macromolecular optoelectronic components

1 Deposition methods
 1 Spin coating
 2 Vapour phase deposition
3 Polymerisation in the vapour phase
 (VDP method) ... 203
4 Film growth during vapour deposition: benefits
due to deposition assisted by ion beams 204
5 Comment: substrate temperature effects 209
II Fabrication methods: OLEDs and optical guides for
 modulator arms 210
 1 OLED fabrication 210
 2 Fabrication of modulator guides/arms from
 polymers ... 212
III Photometric characterisation of organic LEDs
 (OLEDs or PLEDs) 217
 1 General definitions 217
 2 Internal and external fluxes and quantum yields:
 emissions inside and outside of components 221
 3 Measuring luminance and yields with a
 photodiode ... 226
IV Characterisation of polymer based linear wave guides .. 232
 1 Measuring transversally diffused light 232
 2 Loss analyses using ‘Cut – Back’ and ‘Endface
 Coupling’ methods 233

Chapter IX: Organic structures and materials in optoelectronic
emitters ... 235
I Introduction .. 235
II How CRTs work 235
III Electroluminescent inorganic diodes 236
 1 How they work 236
 2 Display applications 237
 3 Characteristic parameters 237
 4 In practical terms 238
IV Screens based on liquid crystals 239
 1 General points 239
 2 How liquid crystal displays work 240
 3 LCD screen structure and the role of polymers .. 242
 4 Addressing in LCD displays 243
 5 Conclusion .. 244
V Plasma screens ... 244
VI Micro-point screens (field emission displays (FED)) . 245
VII Electroluminescent screens 246
 1 General mechanism 246
 2 Available transitions in an inorganic phosphor .. 247
 3 Characteristics of inorganic phosphors from
 groups II–VI ... 249
4 Electroluminescent thin film displays: how they work with alternating currents 250
5 Electroluminescent devices operating under direct current conditions 251

VIII Organic (OLED) and polymer (PLED) electroluminescent diodes 253
 1 Brief history and résumé 253
 2 The two main developmental routes 253
 3 How OLEDs function and their interest 254

Chapter X: Electroluminescent organic diodes ... 257
I Introduction .. 257
II Comparing electronic injection and transport models with experimental results 258
 1 General points: properties and methods applied to their study 258
 2 Small molecules (Alq3) 259
 3 Polymers 267
III Strategies for improving organic LEDs and yields .. 272
 1 Scheme of above detailed processes 272
 2 Different types of yields 273
 3 Various possible strategies to improve organic LED performances 274
IV Adjusting electronic properties of organic solids for electroluminescent applications .. 276
 1 A brief justification of n- and p-type organic conductivity 276
 2 The problem of equilibrating electron and hole injection currents 277
 3 Choosing materials for electrodes and problems encountered with interfaces 277
 4 Confinement layers and their interest 279
V Examples of organic multi-layer structures .. 279
 1 Mono-layer structures and the origin of their poor performance 279
 2 The nature of supplementary layers 280
 3 Classic examples of the effects of specific organic layers 280
 4 Treatment of the emitting zone in contact with the anode 284
VI Modification of optical properties of organic solids for applications 285
 1 Adjusting the emitted wavelength 285
 2 Excitation energy transfer mechanisms in films doped with fluorescent or phosphorescent dyes 286
Chapter XI: Organic photovoltaic devices

I Principles and history of organic based photovoltaics
1 General points: the photovoltaic effect
2 Initial attempts using organic materials: the phthalocyanines
3 Solar cells based on pentacene doped with iodine
4 The general principle of Graetzel and current organic solar cells

II π-Conjugated materials under development for the conversion of solar energy
1 Metal-Insulator-Metal structures
2 How bilayer hetero-structures work and their limits
3 Volume heterojunctions

III Additional informations about photovoltaic cells and organic components
1 Discussion about mechanisms leading to the generation of charge carriers in organics
2 Electric circuit based on an irradiated pn-junction; photovoltaic parameters
3 Circuit equivalent to a solar cell
4 Possible limits
5 Examples: routes under study and the role of various parameters
6 Conclusion
Chapter XII: The origin of non-linear optical properties

I Introduction: basic equations for electro-optical effects
 1 Context
 2 Basic equations used in non-linear optics

II The principle of phase modulators and organic materials
 1 Phase modulator
 2 The advantages of organic materials
 3 Examples of organic donor-acceptor non-linear optical systems
 4 General structure of molecules used in non-linear optics

III The molecular optical diode
 1 The centrosymmetric molecule
 2 Non-centrosymmetric molecules
 3 Conclusion

IV Phenomenological study of the Pockels effect in donor-spacer-acceptor systems
 1 Basic configuration
 2 Fundamental equation for a dynamic system
 3 Expressions for polarisability and susceptibility
 4 Expression for the indice—and the insertion of the electro-optical coefficient r

V Organic electro-optical modulators and their basic design
 1 The principal types of electro-optical modulators
 2 Figures of merit
 3 The various organic systems available for use in electro-optical modulators

VI Techniques such as etching and polyimide polymer structural characteristics
 1 Paired materials: polyimide/DR1
 2 Device dimensions—resorting to lithography
 3 Etching
 4 Examples of polymer based structures

VII Conclusion

Appendices

Appendix A-1: Atomic and molecular orbitals
 I Atomic and molecular orbitals
 1 Atomic s- and p-orbitals
 2 Molecular orbitals
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>σ- and π-bonds</td>
<td>380</td>
</tr>
<tr>
<td>II</td>
<td>The covalent bond and its hybridisation</td>
<td>381</td>
</tr>
<tr>
<td></td>
<td>1 Hybridisation of atomic orbitals</td>
<td>381</td>
</tr>
<tr>
<td></td>
<td>2 sp(^3) Hybridisation</td>
<td>383</td>
</tr>
<tr>
<td>Appendix A-2: Representation of states in a chain of atoms</td>
<td>389</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>A chain of atoms exhibiting σ-orbital overlapping</td>
<td>389</td>
</tr>
<tr>
<td></td>
<td>1 σ-orbitals and a compliment to the example of 8 atoms in a chain</td>
<td>389</td>
</tr>
<tr>
<td></td>
<td>2 General representation of states in a chain of overlapping σ-s-orbitals</td>
<td>391</td>
</tr>
<tr>
<td></td>
<td>3 General representation of states in a chain of overlapping σ-p-orbitals</td>
<td>393</td>
</tr>
<tr>
<td>II</td>
<td>π Type overlapping of p-orbitals in a chain of atoms:</td>
<td>393</td>
</tr>
<tr>
<td></td>
<td>π- p- and π*-p-orbitals</td>
<td>393</td>
</tr>
<tr>
<td>III</td>
<td>σ-s- and σ-p-bonds in chains of atoms</td>
<td>394</td>
</tr>
<tr>
<td>IV</td>
<td>Comments</td>
<td>395</td>
</tr>
<tr>
<td></td>
<td>1 The Bloch function</td>
<td>395</td>
</tr>
<tr>
<td></td>
<td>2 Expression for the effective mass (m(^*))</td>
<td>396</td>
</tr>
<tr>
<td>Appendix A-3: Electronic and optical properties of fullerene-C60 in the solid (film) state</td>
<td>397</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Electronic properties of fullerene-C60</td>
<td>397</td>
</tr>
<tr>
<td>II</td>
<td>Optical properties and observed transitions</td>
<td>401</td>
</tr>
<tr>
<td>Appendix A-4: General theory of conductivity for a regular lattice</td>
<td>403</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Electron transport effected by an external force and its study</td>
<td>403</td>
</tr>
<tr>
<td></td>
<td>1 Effect of force on electron movement and reasoning within reciprocal space</td>
<td>403</td>
</tr>
<tr>
<td></td>
<td>2 Boltzmann's transport equation</td>
<td>404</td>
</tr>
<tr>
<td>II</td>
<td>State density function, carrier flux and current density in the reciprocal space</td>
<td>406</td>
</tr>
<tr>
<td></td>
<td>1 General expressions for fluxes of particles</td>
<td>406</td>
</tr>
<tr>
<td></td>
<td>2 Expressions for the state density function</td>
<td>406</td>
</tr>
<tr>
<td></td>
<td>3 Expression for flux</td>
<td>408</td>
</tr>
<tr>
<td></td>
<td>4 Expression for current density in reciprocal space</td>
<td>408</td>
</tr>
<tr>
<td>III</td>
<td>Different expressions for the current density</td>
<td>409</td>
</tr>
<tr>
<td></td>
<td>1 Usual expression for current density in energy space</td>
<td>409</td>
</tr>
<tr>
<td></td>
<td>2 Studies using various examples</td>
<td>410</td>
</tr>
<tr>
<td></td>
<td>3 Expressions for mobility</td>
<td>412</td>
</tr>
<tr>
<td></td>
<td>4 The Kubo – Greenwood expression for conductivity</td>
<td>413</td>
</tr>
</tbody>
</table>
IV Complementary comments 414
 1 Concerning the approximation of the effective mass and isotropic diffusions 414
 2 General laws for changes in mobility with temperature 415

Appendix A-5: General theory of conductivity in localised states 417
 I Expression for current intensity associated with hopping transport ... 417
 1 Transcribing transport phenomena into equations ... 417
 2 Calculating the current intensity due to hopping mechanisms ... 419
 II Expression for current density and thermally activated mobility ... 419
 1 Expression for current density relative to transport at a particular energy level ... 419
 2 Generalisation of the form of Kubo–Greenwood conductivity ... 420
 3 Thermally activated mobility ... 420
 III Approximations for localised and degenerate states ... 421

Appendix A-6: Expressions for thermoelectric power in solids: conducting polymers ... 423
 I Definition and reasons for use ... 423
 1 Definition ... 423
 2 Reasons for use ... 423
 II TEP of metals (E_F within a band of delocalised states) ... 424
 III TEP of semiconductors (SC) (E_F in the gap) ... 424
 1 Preliminary remark ... 425
 2 An ideal n-type semiconductor ... 425
 3 An ideal n-type semiconductor ... 426
 4 Comment on amorphous semi-conductors ... 426
 5 A non-ideal amorphous semiconductor with E_F below its states in the band tails ... 426
 IV TEP under a polaronic regime ... 427
 1 High temperature regime ... 427
 2 Intermediate temperature regime ... 427
 3 Other regimes ... 427
 V The TEP for a high density of localised states around E_F ... 427
 1 Initial hypothesis ... 427
 2 The result in VRH ... 428
VI General representation ... 429
VII Real behaviour ... 429
 1 General laws ... 429
 2 Behaviour as a function of doping levels 430
 3 Representational graph ... 431
 4 An example result .. 431

Appendix A-7: Stages leading to emission and injection laws at interfaces ... 433
 I Thermoelectric emission and the Dushman–Richardson law ... 433
 II Schottky injection (field effect emissions) ... 434
 1 The potential barrier at the atomic scale 435
 2 Emission conditions: Schottky emission law and the decrease in the potential barrier by field effect. 435
 III Injection through tunnelling effect and the Fowler–Nordheim equation ... 437
 1 The problem ... 437
 2 Form of the transparency (T) of a triangular barrier 438
 3 The Fowler–Nordheim equation ... 440

Appendix A-8: Energy levels and permitted transitions (and selection rules) in isolated atoms ... 443
 I Spherical atoms with an external electron .. 443
 1 Energy levels and electron configuration 443
 2 Selection rules ... 444
 II An atom with more than one peripheral electron 445
 1 First effect produced from the perturbation H_{ee} due to exact electronic interactions 445
 2 Perturbation involving the coupling energy between different magnetic moments exactly tied to kinetic moments .. 446
 3 Selection rules ... 447

Appendix A-9: Etching polymers with ion beams: characteristics and results ... 449
 I Level of pulverisation (Y) .. 449
 1 Definition .. 449
 2 The result $Y_{\text{physical}} = f(E)$: 3 zones 450
 3 Level of chemical pulverisation ... 451
 II The relationship between etching speed and degree of pulverisation ... 451
 1 At normal incidence .. 451
 2 At oblique incidence ... 452
III Speed of reactive etching (IBAE Ar\(^+\)/O\(_2\) or O\(^+\)/O\(_2\)) ... 452

IV Preliminary modelling of Y\(_\text{physical}\) for PI 2566 454
 1 Levels of carbon pulverisation using O\(^+\) ions 454
 2 Comparing simulations of Y\(_\text{physical}\)(\(\theta\)) = \(f(\theta)\) and
 the Thompson and Sigmund models 454

V Results from etching of polyimides 455
 1 Self-supporting polyimide: UPLEX 455
 2 A study of the etching of PI 2566 456

Appendix A-10: An aide-mémoire on dielectrics 459
 I Definitions of various dielectric permittivities 459
 1 Absolute permittivity 459
 2 Relative permittivity 459
 3 Complex relative permittivity 460
 4 Limited permittivities 460
 5 Dielectric conductivity 461
 6 Classification of diverse dielectric phenomena ... 461
 II Relaxation of a charge occupying two positions
 separated by a potential barrier 463
 1 Aide-mémoire 463
 2 Transportation in a dielectric with trapping levels,
 and the effect of an electric field on transitions
 between trap levels 464
 3 Expression for the polarisation at an instant t
 following the displacement of electrons 466
 4 Practical determination of potential well depths ... 467

Appendix A-11: The principal small molecules and polymers used in
organic optoelectronics 471
 I Chemical groups and electron transport 471
 II Examples of polymers used for their
 electroluminescence 471
 1 The principal emitting polymers 471
 2 'The' polymer for hole injection layers (HIL) ... 472
 3 Example of a polymer used in hole transport
 layers (HTL) 473
 4 Example of a polymer used in electron transport
 layer (ETL) 473
 III Small molecules 473
 1 The principal green light emitting ligands 473
 2 Principal electron transporting small molecules
 emitting green light 474
 3 Example electron transporting small molecules
 emitting blue light 474
 4 Example small molecules which emit red light ... 474
5 Examples of small molecules which serve principally as hole injection layers (HIL) 475
6 Examples of small molecules serving principally in hole transport layers (HTL) 475
7 Example of a small molecule serving principally to confine holes in ‘hole blocking layers’ (HBL) . 476

Appendix A-12: Mechanical generation of the second harmonic and the Pockels effect 477
I Mechanical generation of the second harmonic (in one-dimension) ... 477
 1 Preliminary remark: the effect of an intense optical field (\(E^0 \)) .. 477
 2 Placing the problem into equations .. 477
 3 Solving the problem .. 480
II Excitation using two pulses and the Pockels effect .. 481
 1 Excitation from two pulses .. 481
 2 The Pockels Effect .. 482

Bibliography ... 485

Index ... 495