CONTENTS

CHAPTER 1
INTRODUCTION TO THE MICROPROCESSOR AND COMPUTER

Introduction/Chapter Objectives, 1
1–1 A Historical Background, 2; 1–2 The Microprocessor-Based Personal Computer System, 16; 1–3 Number Systems, 27; 1–4 Computer Data Formats, 33; 1–5 Summary, 42; 1–6 Questions and Problems, 44

CHAPTER 2
THE MICROPROCESSOR AND ITS ARCHITECTURE

Introduction/Chapter Objectives, 49
2–1 Internal Microprocessor Architecture, 49; 2–2 Real Mode Memory Addressing, 55; 2–3 Introduction to Protected Mode Memory Addressing, 60; 2–4 Memory Paging, 65; 2–5 Summary, 68; 2–6 Questions and Problems, 70

CHAPTER 3
ADDRESSING MODES

Introduction/Chapter Objectives, 72
3–1 Data-Addressing Modes, 72; 3–2 Program Memory-Addressing Modes, 94; 3–3 Stack Memory-Addressing Modes, 96; 3–4 Summary, 99; 3–5 Questions and Problems, 101

CHAPTER 4
DATA MOVEMENT INSTRUCTIONS

Introduction/Chapter Objectives, 104
4–1 MOV Revisited, 105; 4–2 PUSH/POP, 113; 4–3 Load-Effective Address, 118; 4–4 String Data Transfers, 121; 4–5 Miscellaneous Data Transfer Instructions, 128; 4–6 Segment Override Prefix, 133; 4–7 Assembler Detail, 134; 4–8 Summary, 143; 4–9 Questions and Problems, 145

CHAPTER 5
ARITHMETIC AND LOGIC INSTRUCTIONS

Introduction/Chapter Objectives, 148
5–1 Addition, Subtraction, and Comparison, 148; 5–2 Multiplication and Division, 158; 5–3 BCD and ASCII Arithmetic, 163; 5–4 Basic Logic Instructions, 166; 5–5 Shift and Rotate, 172; 5–6 String Comparisons, 176; 5–7 Summary, 177; 5–8 Questions and Problems, 179
CHAPTER 6 PROGRAM CONTROL INSTRUCTIONS
Introduction/Chapter Objectives, 182
6–1 The Jump Group, 182; 6–2 Controlling the Flow of the Program, 192; 6–3 Procedures, 197;
6–4 Introduction to Interrupts, 202; 6–5 Machine Control and Miscellaneous Instructions, 206;
6–6 Summary, 209; 6–7 Questions and Problems, 210

CHAPTER 7 USING ASSEMBLY LANGUAGE WITH C/C++
Introduction/Chapter Objectives, 213
7–1 Using Assembly Language with C++ for 16-Bit DOS Applications, 214;
7–2 Using Assembly Language with Visual C/C++ for 32-Bit Applications, 221;
7–3 Separate Assembly Objects, 230; 7–4 Summary, 235; 7–5 Questions and Problems, 236

CHAPTER 8 PROGRAMMING THE MICROPROCESSOR
Introduction/Chapter Objectives, 238
8–1 Modular Programming, 239; 8–2 Using the Keyboard and Video Display, 247;
8–3 Data Conversions, 260; 8–4 Disk Files, 268; 8–5 Example Programs, 279;
8–6 Summary, 285; 8–7 Questions and Problems, 285

CHAPTER 9 8086/8088 HARDWARE SPECIFICATIONS
Introduction/Chapter Objectives, 288
9–1 Pin-Outs and the Pin Functions, 288; 9–2 Clock Generator (8284A), 293;
9–3 Bus Buffering and Latching, 296; 9–4 Bus Timing, 301; 9–5 Ready and the Wait State, 306;
9–6 Minimum Mode versus Maximum Mode, 309; 9–7 Summary, 311;
9–8 Questions and Problems, 312

CHAPTER 10 MEMORY INTERFACE
Introduction/Chapter Objectives, 314
10–1 Memory Devices, 314; 10–2 Address Decoding, 326;
10–3 8086 and 80188 (8-Bit) Memory Interface, 335;
10–4 8086, 80186, 80286, and 80386SX (16-Bit) Memory Interface, 341;
10–5 80386DX and 80486 (32-Bit) Memory Interface, 348;
10–6 Pentium through Pentium 4 (64-Bit) Memory Interface, 351;
10–7 Dynamic RAM, 355; 10–8 Summary, 358; 10–9 Questions and Problems, 359

CHAPTER 11 BASIC I/O INTERFACE
Introduction/Chapter Objectives, 362
11–1 Introduction to I/O Interface, 362; 11–2 I/O Port Address Decoding, 372; 11–3 The
Programmable Peripheral Interface, 380; 11–4 8254 Programmable Interval Timer, 406;
11–5 16550 Programmable Communications Interface, 416; 11–6 Analog-to-Digital (ADC) and
Digital-to-Analog (DAC) Converters, 424; 11–7 Summary, 430; 11–8 Questions and Problems, 431

CHAPTER 12 INTERRUPTS
Introduction/Chapter Objectives, 434
12–1 Basic Interrupt Processing, 434; 12–2 Hardware Interrupts, 442; 12–3 Expanding the
Interrupt Structure, 448; 12–4 8259A Programmable Interrupt Controller, 451; 12–5 Interrupt
Examples, 465; 12–6 Summary, 469; 12–7 Questions and Problems, 470

CHAPTER 13 DIRECT MEMORY ACCESS AND DMA-CONTROLLED I/O
Introduction/Chapter Objectives, 472
13–1 Basic DMA Operation, 472; 13–2 The 8237 DMA Controller, 474;