CONTENTS

2.3.2 Solid Solutions and Nordheim’s Rule 134

2.4 Resistivity of Mixtures and Porous Materials 139
 2.4.1 Heterogeneous Mixtures 139
 2.4.2 Two-Phase Alloy (Ag–Ni) Resistivity and Electrical Contacts 143

2.5 The Hall Effect and Hall Devices 145

2.6 Thermal Conduction 149
 2.6.1 Thermal Conductivity 149
 2.6.2 Thermal Resistance 153

2.7 Electrical Conductivity of Nonmetals 154
 2.7.1 Semiconductors 155
 2.7.2 Ionic Crystals and Glasses 159

Additional Topics 163

2.8 Skin Effect: HF Resistance of a Conductor 163

2.9 Thin Metal Films 166
 2.9.1 Conduction in Thin Metal Films 166
 2.9.2 Resistivity of Thin Films 167

2.10 Interconnects in Microelectronics 172

2.11 Electromigration and Black’s Equation 176

CD Selected Topics and Solved Problems 178

Defining Terms 178

Questions and Problems 180

Chapter 3

Elementary Quantum Physics 191

3.1 Photons 191
 3.1.1 Light as a Wave 191
 3.1.2 The Photoelectric Effect 194
 3.1.3 Compton Scattering 199
 3.1.4 Black Body Radiation 202

3.2 The Electron as a Wave 205
 3.2.1 De Broglie Relationship 205
 3.2.2 Time-Independent Schrödinger Equation 208

3.3 Infinite Potential Well: A Confined Electron 212

3.4 Heisenberg’s Uncertainty Principle 217

3.5 Tunneling Phenomenon: Quantum Leak 221

3.6 Potential Box: Three Quantum Numbers 228

3.7 Hydrogenic Atom 231
 3.7.1 Electron Wavefunctions 231
 3.7.2 Quantized Electron Energy 236
 3.7.3 Orbital Angular Momentum and Space Quantization 241
 3.7.4 Electron Spin and Intrinsic Angular Momentum S 245
 3.7.5 Magnetic Dipole Moment of the Electron 248
 3.7.6 Total Angular Momentum J 252

3.8 The Helium Atom and the Periodic Table 254
 3.8.1 He Atom and Pauli Exclusion Principle 254
 3.8.2 Hund’s Rule 256

3.9 Stimulated Emission and Lasers 258
 3.9.1 Stimulated Emission and Photon Amplification 258
 3.9.2 Helium–Neon Laser 261
 3.9.3 Laser Output Spectrum 265

Additional Topics 267

3.10 Optical Fiber Amplifiers 267

CD Selected Topics and Solved Problems 268

Defining Terms 269

Questions and Problems 272

Chapter 4

Modern Theory of Solids 285

4.1 Hydrogen Molecule: Molecular Orbital Theory of Bonding 285

4.2 Band Theory of Solids 291
 4.2.1 Energy Band Formation 291
 4.2.2 Properties of Electrons in a Band 296

4.3 Semiconductors 299

4.4 Electron Effective Mass 303

4.5 Density of States in an Energy Band 305

4.6 Statistics: Collections of Particles 312
 4.6.1 Boltzmann Classical Statistics 312
 4.6.2 Fermi–Dirac Statistics 313

4.7 Quantum Theory of Metals 315
 4.7.1 Free Electron Model 315
 4.7.2 Conduction in Metals 318
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.8</td>
<td>Fermi Energy Significance</td>
<td>320</td>
</tr>
<tr>
<td>4.8.1</td>
<td>Metal–Metal Contacts: Contact Potential</td>
<td>320</td>
</tr>
<tr>
<td>4.8.2</td>
<td>The Seebeck Effect and the Thermocouple</td>
<td>322</td>
</tr>
<tr>
<td>4.9</td>
<td>Thermionic Emission and Vacuum Tube Devices</td>
<td>328</td>
</tr>
<tr>
<td>4.9.1</td>
<td>Thermionic Emission: Richardson–Dushman Equation</td>
<td>328</td>
</tr>
<tr>
<td>4.9.2</td>
<td>Schottky Effect and Field Emission</td>
<td>332</td>
</tr>
<tr>
<td>4.10</td>
<td>Phonons</td>
<td>337</td>
</tr>
<tr>
<td>4.10.1</td>
<td>Harmonic Oscillator and Lattice Waves</td>
<td>337</td>
</tr>
<tr>
<td>4.10.2</td>
<td>Debye Heat Capacity</td>
<td>342</td>
</tr>
<tr>
<td>4.10.3</td>
<td>Thermal Conductivity of Nonmetals</td>
<td>348</td>
</tr>
<tr>
<td>4.10.4</td>
<td>Electrical Conductivity</td>
<td>350</td>
</tr>
<tr>
<td>4.11</td>
<td>Band Theory of Metals: Electron Diffraction in Crystals</td>
<td>352</td>
</tr>
<tr>
<td>4.12</td>
<td>Grüneisen's Model of Thermal Expansion</td>
<td>361</td>
</tr>
<tr>
<td></td>
<td>Additional Topics</td>
<td>352</td>
</tr>
<tr>
<td>4.13</td>
<td>Defining Terms</td>
<td>363</td>
</tr>
<tr>
<td></td>
<td>Questions and Problems</td>
<td>365</td>
</tr>
<tr>
<td>5.0</td>
<td>Semiconductors</td>
<td>373</td>
</tr>
<tr>
<td>5.1</td>
<td>Intrinsic Semiconductors</td>
<td>374</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Silicon Crystal and Energy Band Diagram</td>
<td>374</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Electrons and Holes</td>
<td>376</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Conduction in Semiconductors</td>
<td>378</td>
</tr>
<tr>
<td>5.1.4</td>
<td>Electron and Hole Concentrations</td>
<td>380</td>
</tr>
<tr>
<td>5.2</td>
<td>Extrinsic Semiconductors</td>
<td>388</td>
</tr>
<tr>
<td>5.2.1</td>
<td>n-Type Doping</td>
<td>388</td>
</tr>
<tr>
<td>5.2.2</td>
<td>p-Type Doping</td>
<td>390</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Compensation Doping</td>
<td>392</td>
</tr>
<tr>
<td>5.3</td>
<td>Temperature Dependence of Conductivity</td>
<td>396</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Carrier Concentration Temperature Dependence</td>
<td>396</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Drift Mobility: Temperature and Impurity Dependence</td>
<td>401</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Conductivity Temperature Dependence</td>
<td>404</td>
</tr>
<tr>
<td>5.3.4</td>
<td>Degenerate and Nondegenerate Semiconductors</td>
<td>406</td>
</tr>
<tr>
<td>5.4</td>
<td>Recombination and Minority Carrier Injection</td>
<td>407</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Direct and Indirect Recombination</td>
<td>407</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Minority Carrier Lifetime</td>
<td>410</td>
</tr>
<tr>
<td>5.5</td>
<td>Diffusion and Conduction Equations and Random Motion</td>
<td>416</td>
</tr>
<tr>
<td>5.6</td>
<td>Continuity Equation</td>
<td>422</td>
</tr>
<tr>
<td>5.6.1</td>
<td>Time-Dependent Continuity Equation</td>
<td>422</td>
</tr>
<tr>
<td>5.6.2</td>
<td>Steady-State Continuity Equation</td>
<td>424</td>
</tr>
<tr>
<td>5.7</td>
<td>Optical Absorption</td>
<td>427</td>
</tr>
<tr>
<td>5.8</td>
<td>Piezoresistivity</td>
<td>431</td>
</tr>
<tr>
<td>5.9</td>
<td>Schottky Junction</td>
<td>435</td>
</tr>
<tr>
<td>5.9.1</td>
<td>Schottky Diode</td>
<td>435</td>
</tr>
<tr>
<td>5.9.2</td>
<td>Schottky Junction Solar Cell</td>
<td>440</td>
</tr>
<tr>
<td>5.10</td>
<td>Ohmic Contacts and Thermoelectric Coolers</td>
<td>443</td>
</tr>
<tr>
<td>5.1.11</td>
<td>Additional Topics</td>
<td>448</td>
</tr>
<tr>
<td>5.1.12</td>
<td>Direct and Indirect Bandgap Semiconductors</td>
<td>448</td>
</tr>
<tr>
<td>5.1.13</td>
<td>Indirect Recombination</td>
<td>457</td>
</tr>
<tr>
<td>5.1.14</td>
<td>Amorphous Semiconductors</td>
<td>458</td>
</tr>
<tr>
<td>5.1.15</td>
<td>CD Selected Topics and Solved Problems</td>
<td>461</td>
</tr>
<tr>
<td>5.1.16</td>
<td>Defining Terms</td>
<td>461</td>
</tr>
<tr>
<td>5.1.17</td>
<td>Questions and Problems</td>
<td>464</td>
</tr>
<tr>
<td>6.1</td>
<td>Semiconductor Devices</td>
<td>475</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Ideal pn Junction</td>
<td>476</td>
</tr>
<tr>
<td>6.1.2</td>
<td>No Applied Bias: Open Circuit</td>
<td>476</td>
</tr>
<tr>
<td>6.1.3</td>
<td>Forward Bias: Diffusion Current</td>
<td>481</td>
</tr>
<tr>
<td>6.1.4</td>
<td>Forward Bias: Recombination and Total Current</td>
<td>487</td>
</tr>
<tr>
<td>6.1.5</td>
<td>Reverse Bias</td>
<td>489</td>
</tr>
<tr>
<td>6.2</td>
<td>pn Junction Band Diagram</td>
<td>494</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Open Circuit</td>
<td>494</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Forward and Reverse Bias</td>
<td>495</td>
</tr>
</tbody>
</table>
6.3 Depletion Layer Capacitance of the \textit{pn} Junction 498
6.4 Diffusion (Storage) Capacitance and Dynamic Resistance 500
6.5 Reverse Breakdown: Avalanche and Zener Breakdown 502
 6.5.1 Avalanche Breakdown 503
 6.5.2 Zener Breakdown 504
6.6 Bipolar Transistor (BJT) 506
 6.6.1 Common Base (CB) dc Characteristics 506
 6.6.2 Common Base Amplifier 515
 6.6.3 Common Emitter (CE) dc Characteristics 517
 6.6.4 Low-Frequency Small-Signal Model 518
6.7 Junction Field Effect Transistor (JFET) 522
 6.7.1 General Principles 522
 6.7.2 JFET Amplifier 528
6.8 Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) 532
 6.8.1 Field Effect and Inversion 532
 6.8.2 Enhancement MOSFET 535
 6.8.3 Threshold Voltage 539
 6.8.4 Ion Implanted MOS Transistors and Poly-Si Gates 541
6.9 Light Emitting Diodes (LED) 543
 6.9.1 LED Principles 543
 6.9.2 Heterojunction High-Intensity LEDs 547
 6.9.3 LED Characteristics 548
6.10 Solar Cells 551
 6.10.1 Photovoltaic Device Principles 551
 6.10.2 Series and Shunt Resistance 559
 6.10.3 Solar Cell Materials, Devices, and Efficiencies 561
Additional Topics 564
6.11 \textit{pin} Diodes, Photodiodes, and Solar Cells 564
6.12 Semiconductor Optical Amplifiers and Lasers 566
CD Selected Topics and Solved Problems 570
Defining Terms 570
Questions and Problems 573

Chapter 7
Dielectric Materials and Insulation 583
7.1 Matter Polarization and Relative Permittivity 584
 7.1.1 Relative Permittivity: Definition 584
 7.1.2 Dipole Moment and Electronic Polarization 585
 7.1.3 Polarization Vector \mathbf{P} 589
 7.1.4 Local Field E_{loc} and Clausius–Mossotti Equation 593
7.2 Electronic Polarization: Covalent Solids 595
7.3 Polarization Mechanisms 597
 7.3.1 Ionic Polarization 597
 7.3.2 Orientational (Dipolar) Polarization 598
 7.3.3 Interfacial Polarization 600
 7.3.4 Total Polarization 601
7.4 Frequency Dependence: Dielectric Constant and Dielectric Loss 603
 7.4.1 Dielectric Loss 603
 7.4.2 Debye Equations, Cole–Cole Plots, and Equivalent Series Circuit 611
7.5 Gauss’s Law and Boundary Conditions 614
7.6 Dielectric Strength and Insulation Breakdown 620
 7.6.1 Dielectric Strength: Definition 620
 7.6.2 Dielectric Breakdown and Partial Discharges: Gases 621
 7.6.3 Dielectric Breakdown: Liquids 622
 7.6.4 Dielectric Breakdown: Solids 623
7.7 Capacitor Dielectric Materials 631
 7.7.1 Typical Capacitor Constructions 631
 7.7.2 Dielectrics: Comparison 634
7.8 Piezoelectricity, Ferroelectricity, and Pyroelectricity 638
 7.8.1 Piezoelectricity 638
 7.8.2 Piezoelectricity: Quartz Oscillators and Filters 644
 7.8.3 Ferroelectric and Pyroelectric Crystals 647
Chapter 8
Magnetic Properties and Superconductivity 685

8.1 Magnetization of Matter 685
8.1.1 Magnetic Dipole Moment 685
8.1.2 Atomic Magnetic Moments 687
8.1.3 Magnetization Vector \(\mathbf{M} \) 688
8.1.4 Magnetizing Field or Magnetic Field Intensity \(\mathbf{H} \) 691
8.1.5 Magnetic Permeability and Magnetic Susceptibility 692

8.2 Magnetic Material Classifications 696
8.2.1 Diamagnetism 696
8.2.2 Paramagnetism 698
8.2.3 Ferromagnetism 699
8.2.4 Antiferromagnetism 699
8.2.5 Ferrimagnetism 700

8.3 Ferromagnetism Origin and the Exchange Interaction 700

8.4 Saturation Magnetization and Curie Temperature 703

8.5 Magnetic Domains: Ferromagnetic Materials 705
8.5.1 Magnetic Domains 705
8.5.2 Magnetocrystalline Anisotropy 706
8.5.3 Domain Walls 708
8.5.4 Magnetostriiction 711
8.5.5 Domain Wall Motion 712
8.5.6 Polycrystalline Materials and the \(M \) versus \(H \) Behavior 713
8.5.7 Demagnetization 717

Chapter 9
Optical Properties of Materials 773

9.1 Light Waves in a Homogeneous Medium 774
9.2 Refractive Index 777
9.3 Dispersion: Refractive Index–Wavelength Behavior 779
9.4 Group Velocity and Group Index 784
9.5 Magnetic Field: Irradiance and Poynting Vector 787
9.6 Snell’s Law and Total Internal Reflection (TIR) 789
9.7 Fresnel’s Equations 793
9.7.1 Amplitude Reflection and Transmission Coefficients 793
CONTENTS

9.7.2 Intensity, Reflectance, and Transmittance 799

9.8 Complex Refractive Index and Light Absorption 804

9.9 Lattice Absorption 811

9.10 Band-to-Band Absorption 813

9.11 Light Scattering in Materials 816

9.12 Attenuation in Optical Fibers 817

9.13 Luminescence, Phosphors, and White LEDs 820

9.14 Polarization 825

9.15 Optical Anisotropy 827

9.15.1 Uniaxial Crystals and Fresnel's Optical Indicatrix 829

9.15.2 Birefringence of Calcite 832

9.15.3 Dichroism 833

9.16 Birefringent Retarding Plates 833

9.17 Optical Activity and Circular Birefringence 835

Additional Topics 837

9.18 Electro-optic Effects 837

CD Selected Topics and Solved Problems 841

Defining Terms 841

Questions and Problems 844

Appendix A
Bragg’s Diffraction Law and X-ray Diffraction 848

Appendix B
Flux, Luminous Flux, and the Brightness of Radiation 853

Appendix C
Major Symbols and Abbreviations 855

Appendix D
Elements to Uranium 861

Appendix E
Constants and Useful Information 864

Index 866

GaAs ingots and wafers.

SOURCE: Courtesy of Sumitomo Electric Industries, Ltd.