Fundamentals of Atmospheric Modeling

Second Edition

MARK Z. JACOBSON
Stanford University

CAMBRIDGE UNIVERSITY PRESS
Contents

<table>
<thead>
<tr>
<th>Preface</th>
<th>page</th>
<th>xiii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgments</td>
<td></td>
<td>xiv</td>
</tr>
</tbody>
</table>

1 Introduction
- 1.1 Brief history of meteorological sciences
- 1.2 Brief history of air-pollution science
- 1.3 The merging of air-pollution and meteorological sciences
- 1.4 Weather, climate, and air pollution
- 1.5 Scales of motion
- 1.6 Atmospheric processes

2 Atmospheric structure, composition, and thermodynamics
- 2.1 Pressure, density, and composition
- 2.2 Temperature structure
- 2.3 Equation of state
- 2.4 Changes of pressure with altitude
- 2.5 Water in the atmosphere
- 2.6 First law of thermodynamics
- 2.7 Summary
- 2.8 Problems
- 2.9 Computer programming practice

3 The continuity and thermodynamic energy equations
- 3.1 Definitions
- 3.2 Continuity equations
- 3.3 Expanded continuity equations
- 3.4 Thermodynamic energy equation
- 3.5 Summary
- 3.6 Problems
- 3.7 Computer programming practice

4 The momentum equation in Cartesian and spherical coordinates
- 4.1 Horizontal coordinate systems
- 4.2 Newton's second law of motion
- 4.3 Applications of the momentum equation
- 4.4 Summary

vii
Contents

4.5 Problems 136
4.6 Computer programming practice 137

5 Vertical-coordinate conversions
5.1 Hydrostatic and nonhydrostatic models 138
5.2 Altitude coordinate 143
5.3 Pressure coordinate 143
5.4 Sigma-pressure coordinate 151
5.5 Sigma-altitude coordinate 160
5.6 Summary 167
5.7 Problems 167
5.8 Computer programming practice 168

6 Numerical solutions to partial differential equations
6.1 Ordinary and partial differential equations 169
6.2 Operator splitting 170
6.3 Advection–diffusion equations 171
6.4 Finite-difference approximations 172
6.5 Series expansion methods 192
6.6 Finite-volume methods 199
6.7 Advection schemes used in air-quality models 199
6.8 Summary 202
6.9 Problems 202
6.10 Computer programming practice 203

7 Finite-differencing the equations of atmospheric dynamics
7.1 Vertical model grid 204
7.2 The continuity equation for air 208
7.3 The species continuity equation 211
7.4 The thermodynamic energy equation 213
7.5 The horizontal momentum equations 214
7.6 The hydrostatic equation 221
7.7 Order of calculations 222
7.8 Time-stepping schemes 222
7.9 Summary 224
7.10 Problems 224
7.11 Computer programming practice 225
7.12 Modeling project 225

8 Boundary-layer and surface processes
8.1 Turbulent fluxes of momentum, energy, and moisture 228
8.2 Friction wind speed 230
8.3 Surface roughness lengths 231
8.4 Parameterizations of kinematic turbulent fluxes 235
8.5 Eddy diffusion above the surface layer 250
8.6 Ground surface temperature and soil moisture 254
Contents

17 Chemical equilibrium and dissolution processes

17.1 Definitions .. 553
17.2 Equilibrium reactions 554
17.3 Equilibrium relation and coefficients 558
17.4 Forms of equilibrium-coefficient equations ... 562
17.5 Mean binary solute activity coefficients 565
17.6 Temperature dependence of binary solute activity coefficients 567
17.7 Mean mixed solute activity coefficients 568
17.8 The water equation 570
17.9 Solid formation and deliquescence relative humidity 574
17.10 Example equilibrium problem 575
17.11 Mass-flux iteration method 577
17.12 Analytical equilibrium iteration method 579
17.13 Equilibrium solver results 582
17.14 Nonequilibrium between gases and particles 583
17.15 Summary .. 594
17.16 Problems ... 596
17.17 Computer programming practice 596

18 Cloud thermodynamics and dynamics

18.1 Fog and cloud types and formation mechanisms 598
18.2 Moist adiabatic and pseudoadiabatic processes 602
18.3 Cloud development by free convection 606
18.4 Entrainment ... 608
18.5 Vertical momentum equation in a cloud 610
18.6 Convective available potential energy 612
18.7 Cumulus parameterizations 612
18.8 Cloud microphysics 614
18.9 Summary .. 642
18.10 Problems ... 643
18.11 Computer programming practice 643

19 Irreversible aqueous chemistry

19.1 Significance of aqueous chemical reactions 645
19.2 Mechanisms of converting S(IV) to S(VI) 646
19.3 Diffusion within a drop 652
19.4 Solving growth and aqueous chemical ODEs 654
19.5 Summary .. 659
19.6 Problems ... 659
19.7 Computer programming practice 660

20 Sedimentation, dry deposition, and air–sea exchange

20.1 Sedimentation 661
20.2 Dry deposition 665