Contents

Volume 1

A

ALL-OPTICAL SIGNAL REGENERATION
O Leclerc 1

B

BABINET'S PRINCIPLE
BD Guenther 11

C

CHAOS IN NONLINEAR OPTICS
RG Harrison, W Lu 15

CHEMICAL APPLICATIONS OF LASERS
 Detection of Single Molecules in Liquids
 AJ de Mello, JB Edel, EK Hill 21
 Diffuse-Reflectance Laser Flash Photolysis
 DR Worrall, SL Williams 31
 Laser Manipulation in Polymer Science
 S Ito, Y Hosokawa, H Masuhara 38
 Nonlinear Spectroscopies
 SR Meech 46
 Photodynamic Therapy of Cancer
 AJ MacRobert, T Theodossiou 53
 Pump and Probe Studies of Femtosecond Kinetics
 GD Scholes 62
 Time-Correlated Single-Photon Counting
 A Beeby 68
 Transient Holographic Grating Techniques in Chemical Dynamics
 E Vauthey 73

CHIRPED PULSE AMPLIFICATION
GA Mourou 83

COHERENCE
 Overview
 A Sharma, AK Ghatak, HC Kandpal 84
 Coherence and Imaging
 J van der Gracht 99
 Speckle and Coherence
 G Häusler 114

COHERENT CONTROL
 Theory
 H Rabitz 123
 Experimental
 RJ Levis 133
 Applications in Semiconductors
 HM van Driel, JE Sipe 137

COHERENT LIGHTWAVE SYSTEMS
MJ Connelly 144

COHERENT TRANSIENTS
 Coherent Transient Spectroscopy in Atomic and Molecular Vapors
 PR Berman, RG Brewer 154
 Foundations of Coherent Transients in Semiconductors
 T Meier, SW Koch 163
 Ultrafast Studies of Semiconductors
 J Shah 173

COLOR AND THE WORLD
GN Rao 179

D

DETECTION
 Fiber Sensors
 MJ Connelly 191
 Heterodyning
 T-C Poon 201
Image Post-Processing and Electronic Distribution
KM Iftekharuddin, F Ahmed
Smart Pixel Arrays
P Seitz

DIFFRACTION
- Diffraction Gratings
 J Turunen, T Vallius
- Fraunhofer Diffraction
 BD Guenther
- Fresnel Diffraction
 BD Guenther

DIFFRACTIVE SYSTEMS
- Aberration Correction with Diffractive Elements
 N Lindlein
- Applications of Diffractive and Micro-Optics in Lithography
 V Kettunen, HP Herzig
- Design and Fabrication of Diffractive Optical Elements
 DW Prather, T Dillon, A Sure, X Cao, JN Mait
- Diffractive Laser Resonators
 UD Zeitner, F Wyrowski
- Diffractives in Animals
 AR Parker
- Microstructure Fibers
 RS Windeler
- Omnidirectional Surfaces and Fibers
 S Hart, G Benoit, Y Fink
- Wave Optical Modeling and Design
 F Wyrowski

DISPERSION MANAGEMENT
AE Willner, Y-W Song, J Mcgeehan, Z Pan, B Hoanca

DISPLAYS
RL Donofrio

E

ELECTROMAGNETICALLY INDUCED TRANSPARENCY
JP Marangos

ENVIRONMENTAL MEASUREMENTS
- Doppler Lidar
 RM Hardesty
- Hyperspectral Remote Sensing of Land and the Atmosphere
 WH Farrand
- Laser Detection of Atmospheric Gases
 EV Browell, WB Grant, S Ismail
- Optical Transmission and Scatter of the Atmosphere
 SM Adler-Golden, A Berk

F

FIBER AND GUIDED WAVE OPTICS
- Overview
 A Mickelson
- Dispersion
 L Thévenaz
- Fabrication of Optical Fiber
 D Hewak
- Light Propagation
 FG Omenetto
- Measuring Fiber Characteristics
 A Girard
- Nonlinear Effects (Basics)
 G Millot, P Tchofo-Dinda
- Nonlinear Optics
 K Thyagarajan, AK Ghatak
- Optical Fiber Cables
 G Galliano
- Passive Optical Components
 D Suino

FIBER GRATINGS
PS Westbrook, BJ Eggleton

FOURIER OPTICS
S Jutamulia
Volume 2

G

GEOMETRICAL OPTICS
- Lenses and Mirrors *A Nussbaum*
 1
- Aberrations *A Nussbaum*
 11
- Prisms *A Nussbaum*
 19

H

HOLOGRAPHY, APPLICATIONS
- Art Holography *A Pepper*
 25
- High-Resolution Holographic Imaging and Subsea Holography *J Watson*
 37
- Holographic Recording Materials and Their Processing *HI Bjelkhagen*
 47

HOLOGRAPHY, TECHNIQUES
- Overview *C Shakher, AK Ghatak*
 58
- Color Holography *HI Bjelkhagen*
 64
- Computer-Generated Holograms *WJ Dallas, AW Lohmann*
 72
- Digital Holography *W Osten*
 79
- Holographic Interferometry *P Rastogi*
 88
- Sandwich Holography and Light in Flight *N Abramson*
 99

I

IMAGING
- Information Theory in Imaging *FO Huck, CL Fales*
 107
- Inverse Problems and Computational Imaging *M Bertero, P Boccacci*
 118
- Adaptive Optics *C Pernechele*
 127
- Hyperspectral Imaging *ML Huebschman, RA Schultz, HR Garner*
 134
- Imaging Through Scattering Media *AC Boccara*
 143
- Infrared Imaging *K Krapels, RG Driggers*
 152
- Interferometric Imaging *DL Marks*
 164
- Lidar *ML Simpson, DP Hutchinson*
 169
- Multiplex Imaging *A Lacourt*
 178
- Photon Density Wave Imaging *V Toronov*
 185
- Three-Dimensional Field Transformations *R Piestun*
 191
- Volume Holographic Imaging *G Barbastathis*
 195
- Wavefront Sensors and Control (Imaging Through Turbulence) *CL Matson*
 200

INCOHERENT SOURCES
- Lamps *V Roberts*
 208
- Synchrotrons *R Clarke*
 217

INFORMATION PROCESSING
- All-Optical Multiplexing/Demultiplexing *Z Ghassemlooy, G Swift*
 224
- Coherent Analog Optical Processors *HH Arsenault, S Roy, D Lefebvre*
 237
- Free-Space Optical Computing *AAS Auwal, M Arif*
 247
- Incoherent Analog Optical Processors *S Jutamulia*
 257
- Optical Bit-Serial Computing *AD McAulay*
 263
- Optical Digital Image Processing *BL Shoop*
 266
- Optical Neural Networks *HJ Caulfield*
 275
Instrumentation

<table>
<thead>
<tr>
<th>Topic</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astronomical Instrumentation</td>
<td>J Allington-Smith</td>
<td>281</td>
</tr>
<tr>
<td>Ellipsometry</td>
<td>JN Hilfiker, JA Woollam</td>
<td>297</td>
</tr>
<tr>
<td>Photometry</td>
<td>J Schanda</td>
<td>307</td>
</tr>
<tr>
<td>Scatterometry</td>
<td>JC Stover</td>
<td>317</td>
</tr>
<tr>
<td>Spectrometers</td>
<td>KA More</td>
<td>324</td>
</tr>
<tr>
<td>Telescopes</td>
<td>MM Roth</td>
<td>336</td>
</tr>
</tbody>
</table>

Interferometry

<table>
<thead>
<tr>
<th>Topic</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>JC Wyant</td>
<td>351</td>
</tr>
<tr>
<td>Gravity Wave Detection</td>
<td>N Christensen</td>
<td>357</td>
</tr>
<tr>
<td>Phase-Measurement Interferometry</td>
<td>K Creath, J Schmit</td>
<td>364</td>
</tr>
<tr>
<td>White Light Interferometry</td>
<td>J Schmit</td>
<td>375</td>
</tr>
</tbody>
</table>

Lasers

<table>
<thead>
<tr>
<th>Topic</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon Dioxide Laser</td>
<td>CR Chatwin</td>
<td>389</td>
</tr>
<tr>
<td>Dye Lasers</td>
<td>FJ Duarte, A Costela</td>
<td>400</td>
</tr>
<tr>
<td>Edge Emitters</td>
<td>JJ Coleman</td>
<td>414</td>
</tr>
<tr>
<td>Excimer Lasers</td>
<td>JJ Ewing</td>
<td>421</td>
</tr>
<tr>
<td>Free Electron Lasers</td>
<td>A Gover</td>
<td>431</td>
</tr>
<tr>
<td>Metal Vapor Lasers</td>
<td>DW Coutts</td>
<td>460</td>
</tr>
<tr>
<td>Noble Gas Ion Lasers</td>
<td>WB Bridges</td>
<td>467</td>
</tr>
<tr>
<td>Optical Fiber Lasers</td>
<td>GE Town, NN Akhmediev</td>
<td>475</td>
</tr>
<tr>
<td>Organic Semiconductors and Polymers</td>
<td>GA Turnbull</td>
<td>485</td>
</tr>
<tr>
<td>Planar Waveguide Lasers</td>
<td>S Bhandarkar</td>
<td>493</td>
</tr>
<tr>
<td>Semiconductor Lasers</td>
<td>SW Koch, MR Hofmann</td>
<td>502</td>
</tr>
<tr>
<td>Up-Conversion Lasers</td>
<td>A Brenier</td>
<td>508</td>
</tr>
</tbody>
</table>

Laser-Induced Damage of Optical Materials

<table>
<thead>
<tr>
<th>Topic</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>AJ Glass, AH Guenther</td>
<td></td>
<td>519</td>
</tr>
</tbody>
</table>

Light Emitting Diodes

<table>
<thead>
<tr>
<th>Topic</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>J Schanda</td>
<td></td>
<td>522</td>
</tr>
</tbody>
</table>

Volume 3

Magneto-Optics

<table>
<thead>
<tr>
<th>Topic</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faraday Rotation, CARS, ODMR, ODSR, Optical Pumping</td>
<td>H Pascher</td>
<td>1</td>
</tr>
<tr>
<td>Interband Magnetoabsorption, Cyclotron Resonance, Spin Flip Raman Scattering</td>
<td>CR Pidgeon</td>
<td>10</td>
</tr>
</tbody>
</table>

Materials Characterization Techniques

<table>
<thead>
<tr>
<th>Topic</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\chi^{(2)}$</td>
<td>RC Eckardt</td>
<td>15</td>
</tr>
<tr>
<td>$\chi^{(3)}$</td>
<td>PP Banerjee</td>
<td>25</td>
</tr>
</tbody>
</table>

Materials for Nonlinear Optics

<table>
<thead>
<tr>
<th>Topic</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid Crystals for NLO</td>
<td>IC Khoo</td>
<td>33</td>
</tr>
<tr>
<td>Organic Nonlinear Materials</td>
<td>F Kajzar, I Rau</td>
<td>42</td>
</tr>
</tbody>
</table>
MICROSCOPY
- Overview
 - CJR Sheppard
- Confocal Microscopy
 - T Wilson
- Imaging Multiple Photon Fluorescence Microscopy
 - M Previte
- Interference Microscopy
 - E Novak
- Nonlinear Microscopy
 - S Lévéque-Fort, P Georges
- Phase Contrast Microscopy
 - CJR Sheppard

MODULATORS
- Acousto-Optics
 - M Gottlieb, D Subre
- Electro-Optics
 - LR Dalton
- Modulation and Demodulation of Optical Signals
 - RA Minasian

N
NONCLASSICAL LIGHT
- H Walther

NONLINEAR OPTICS AT THE CRITICAL FIELD LIMIT
- GA Mourou

NONLINEAR OPTICS, APPLICATIONS
- Phase Matching
 - AV Smith
- Pulse Compression via Nonlinear Optics
 - MFS Ferreira
- Raman Lasers
 - M Santagiustina
- Self-Focusing and Related Effects (Solitons and Multiphoton Absorption)
 - RL Sutherland
- Three-Dimensional Microfabrication
 - SM Kuebler, M Rumi

NONLINEAR OPTICS, BASICS
- Cascading
 - G Assanto, GI Stegeman
- $\chi^{(2)}$—Harmonic Generation
 - RC Eckardt
- $\chi^{(3)}$—Third-Harmonic Generation
 - BY Soon, JW Haus
- Four-Wave Mixing
 - L Canioni, L Sarger
- Kramers–Kröning Relations in Nonlinear Optics
 - M Sheik-Bahae
- Nomenclature and Units
 - MP Hasselbeck
- Nonlinear Optical Phase Conjugation
 - BY Zeldovich
- Photorefraction
 - M Cronin-Golomb, B Kippelen
- Ultrafast and Intense-Field Nonlinear Optics
 - AL Gaeta, RW Boyd

NONLINEAR SOURCES
- Harmonic Generation in Gases
 - P Villoresi

O
OPTICAL AMPLIFIERS
- Basic Concepts
 - MFS Ferreira
- Erbium Doped Fiber Amplifiers for Lightwave Systems
 - P Bolland
- Optical Amplifiers in Long-Haul Transmission Systems
 - BM Desthieux
- Raman, Brillouin and Parametric Amplifiers
 - MFS Ferreira
- Semiconductor Optical Amplifiers
 - MJ Connelly

OPTICAL COATINGS
- Anti-Counterfeiting and Decorative Coatings
 - RW Phillips, RL Bonkowski
- Diamond Optical Devices and Coatings
 - DM Aslam
- Laser Damage in Thin Film Coatings
 - D Ristau
- Optical Black Surfaces
 - SM Pompea, SH McCall
- Thin Film Optical Coatings
 - D Ristau
- X-Ray Coatings
 - P Dhez
OPTICAL COMMUNICATION SYSTEMS
Basic Concepts S Lee, AE Willner 376
Historical Development G Keiser 387
Architectures of Optical Fiber Communication Systems G Keiser 394
Free Space Optical Communications R Martini 402
Lightwave Transmitters JG McInerney 409
Local Area Networks E Wong 415
Optical Time Division Multiplexing LP Barry 425
Wavelength Division Multiplexing J Bowers, HF Chou 433

OPTICAL MATERIALS
Color Filter and Absorption Glasses JE Shelby 440
Heterogeneous Materials U Kreibig, M Quinten 446
Lightweight Mirrors JW Bilbro 460
Measurement of Optical Properties of Solids P Lucas 466
Optical Glasses JE Shelby 474
Plastics T Bauer 480

Volume 4

OPTICAL MATERIALS
Sculptured Thin Films K Robbie 1
Smart Optical Materials PM Martin 9
Sol-Gel Materials Lisa C Klein 16

OPTICAL MICROLENSES H Ottevaere, H Thienpont 21

OPTICAL PARAMETRIC DEVICES
Overview BJ Orr 43
Optical Parametric Oscillators (Continuous Wave) S Schiller 51
Optical Parametric Oscillators (Pulsed) H Giessen, XP Zhang 62

OPTICAL PROCESSING SYSTEMS D Arbel, NS Kopeika 69

OPTICAL TWEEZERS A Gajraj, JC Meiners 78

P

PHASE CONTROL
Phase Conjugation and Image Correction EN Leith 87
Wavefront Coding WT Cathey, ER Dowski 93

PHOTON PICTURE OF LIGHT SJ Bentley 106

PHOTONIC CRYSTALS
Atomic Physics G Kurizki, AG Kofman, D Petrosyan 113
Electromagnetic Theory SG Johnson, JD Joannopoulos 120
Microwave Photonic Crystals DF Sievenpiper 128
Nonlinear Optics in Photonic Crystal Fibers JE Sharping, P Kumar 139
Photonic Crystal Lasers, Cavities and Waveguides J O’Brien, W Kuang 146
Self-Assembled and Functionalized Photonic Crystals S Bhandarkar 155

PHYSICAL APPLICATIONS OF LASERS
Free-Electron Lasers in Physics T Dekorsy 164
Industrial Applications IP Mercer 169
Sum-Frequency Generation at Surfaces MB Raschke, YR Shen 184
CONTENTS

Polarization
 Introduction JM Bennett
 Matrix Analysis BD Guenther

Quantum Electrodynamics
 Quantum Theory of the Electromagnetic Field I Bialynicki-Birula,
 Z Bialynicka-Birula
 Cavity QED H Walther
 Cavity QED in Semiconductors M Kira, W Hoyer, SW Koch, G Kbitrova,
 HM Gibbs

Quantum Optics
 Atom Optics AD Cronin, DE Pritchard
 Atomic Coherence Effects A Belyanin, GR Welch, MO Scully
 Entanglement and Quantum Information PG Kwiat, DFV James
 Laser Cooling of Ions H Walther
 Quantum Computing with Atoms SF Huelga
 Squeezed Phonons in Solids AV Bragas, R Merlin

Relativistic Nonlinear Optics DP Umstadter

Scattering
 Raman Scattering F Kannari
 Scattering from Surfaces and Thin Films A Duparré
 Scattering Phenomena in Optical Fibers P Tchofo-Dinda, G Millot
 Scattering Theory YA Eremin
 Stimulated Scattering M Basbiansky, J Reintjes

Semiconductor Materials
 Amorphous Semiconductors JIB Wilson
 Band Structure Engineering CR Pidgeon
 Dilute Magnetic Semiconductors RR Gałązka
 GaAs Based Compounds JJ Finley, JPR David
 Group IV Semiconductors, Si/SiGe DJ Paul
 III-Nitrides KP O'Donnell
 Large Gap II–VI Semiconductors JF Donegan
 Lead Salts G Bauer, G Springholz
 Mercury Cadmium Telluride MB Reine
 Modulation Spectroscopy of Semiconductors and Semiconductor Microstructures Y-S Huang, FH Pollak
 Quantum Dots RJ Warburton
 Type-II Quantum Wells and Superlattices I Vurgaftman, JR Meyer

Semiconductor Physics
 Outline of Basic Electronic Properties CR Pidgeon
 Band Structure and Optical Properties W Zawadzki
 Excitons I Galbraith

Page dimensions: 543.8x749.8
[Image 0x0 to 544x750]
<table>
<thead>
<tr>
<th>Topic</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impurities and Defects</td>
<td>KA Prior</td>
<td>442</td>
</tr>
<tr>
<td>Infrared Lattice Properties</td>
<td>TJ Parker, SRP Smith</td>
<td>450</td>
</tr>
<tr>
<td>Light Scattering</td>
<td>M Balkanski</td>
<td>460</td>
</tr>
<tr>
<td>Volume 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEMICONDUCTOR PHYSICS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polaron</td>
<td>JT Devreese</td>
<td>1</td>
</tr>
<tr>
<td>Quantum Wells and GaAs-Based Structures</td>
<td>P Blood</td>
<td>9</td>
</tr>
<tr>
<td>Recombination Processes</td>
<td>PT Landsberg</td>
<td>21</td>
</tr>
<tr>
<td>Spin Transport and Relaxation in Semiconductors; Spintronics</td>
<td>ME Flatté, DD Auschalom</td>
<td>29</td>
</tr>
<tr>
<td>Surface Photovoltage Spectroscopy of Semiconductors</td>
<td>L Kronik, Y Shapira</td>
<td>36</td>
</tr>
<tr>
<td>SOLITONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bright Spatial Solitons</td>
<td>C Conti, G Assanto</td>
<td>43</td>
</tr>
<tr>
<td>Optical Fiber Solitons, Physical Origin and Properties</td>
<td>G Millot, P Tchofo-Dinda</td>
<td>56</td>
</tr>
<tr>
<td>Soliton Communication Systems</td>
<td>M Karlsson, P Andrekson</td>
<td>65</td>
</tr>
<tr>
<td>Temporal Solitons</td>
<td>S Trillo, A Tonello</td>
<td>72</td>
</tr>
<tr>
<td>SPECTROSCOPY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absolute Optical Frequency Metrology</td>
<td>ST Cundiff, L Hollberg</td>
<td>82</td>
</tr>
<tr>
<td>Fourier Transform Spectroscopy</td>
<td>T Fromherz</td>
<td>90</td>
</tr>
<tr>
<td>Hadamard Spectroscopy and Imaging</td>
<td>RA DeVerse, RM Hammaker, WG Fateley, FB Geswind, AC Coppi</td>
<td>100</td>
</tr>
<tr>
<td>Nonlinear Laser Spectroscopy</td>
<td>P Ewart</td>
<td>109</td>
</tr>
<tr>
<td>Raman Spectroscopy</td>
<td>R Withnall</td>
<td>119</td>
</tr>
<tr>
<td>Second-Harmonic Spectroscopy</td>
<td>JI Dadap, TF Heinz</td>
<td>134</td>
</tr>
<tr>
<td>Single Molecule Spectroscopy</td>
<td>X Michalet, S Weiss</td>
<td>147</td>
</tr>
<tr>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TERAHERTZ TECHNOLOGY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coherent Terahertz Sources</td>
<td>L Wang</td>
<td>163</td>
</tr>
<tr>
<td>Terahertz Physics of Semiconductor Heterostructures</td>
<td>R Bratschitsch, K Unterrainer</td>
<td>168</td>
</tr>
<tr>
<td>TIME-RESOLVED FLUORESCENCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laser Applications</td>
<td>B Valeur</td>
<td>176</td>
</tr>
<tr>
<td>Measurements in Polymer Science</td>
<td>TA Smith</td>
<td>184</td>
</tr>
<tr>
<td>TOMOGRAPHY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optical Coherence Tomography</td>
<td>SA Boppart</td>
<td>193</td>
</tr>
<tr>
<td>Tomography and Optical Imaging</td>
<td>Z Chen</td>
<td>206</td>
</tr>
<tr>
<td>U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ULTRAFAST LASER TECHNIQUES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generation of Femtosecond Pulses</td>
<td>DT Reid</td>
<td>219</td>
</tr>
<tr>
<td>Pulse Characterization Techniques</td>
<td>DJ Kane</td>
<td>227</td>
</tr>
<tr>
<td>ULTRAFAST TECHNOLOGY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Femtosecond Chemical Dynamics: Gas-Phase</td>
<td>M Dantus, EJ Brown</td>
<td>240</td>
</tr>
<tr>
<td>Femtosecond Condensed Phase Spectroscopy: Structural Dynamics</td>
<td>ETJ Nibbering</td>
<td>253</td>
</tr>
<tr>
<td>Ultrafast Illumination and Processing</td>
<td>Y Fainman, DM Marom</td>
<td>264</td>
</tr>
</tbody>
</table>
Color Plate Sections
Volume 1
Volume 2
Volume 3
Volume 4
Volume 5

between pages 236 and 237
between pages 256 and 257
between pages 240 and 241
between pages 224 and 225
between pages 192 and 193

Index

275