Surface Effects in Magnetic Nanoparticles

Edited by

Dino Fiorani
ISM-CNR
Area della Ricerca di Roma
Rome, Italy

Springer
Contents

CHAPTER 1. Modern Electronic Structure Theory for Complex Properties of Magnetic Materials
A.J. Freeman, K. Nakamura and R. Wu

1.1 Introduction 1
1.2 Density functional theory and the FLAPW method 2
1.3 Results and discussion 7
1.4 Non collinear magnetism phenomena at surface and interfaces 21

CHAPTER 2. Monte Carlo Studies of Surface and Interface Effects in Magnetic Nanoparticles
K.N. Trohidou

2.1 Introduction 45
2.2 The model 46
2.3 Ferromagnetic particles 48
2.4 Oxidised particles 52
2.5 Antiferromagnetic nanoparticles 57
2.6 Final remarks 70

CHAPTER 3. Magnetic Nanoparticles as Many-Spin Systems
H. Kachkachi and D.A. Garanin

3.1 Introduction 75
3.2 Basic relations 78
3.3 Nanoparticle as a multi-spin system: finite size vs boundary effects 80
3.4 A nanoparticle as a multi-spin system: effect of surface anisotropy 91
3.5 Conclusions 102
CHAPTER 4. From Finite-Size and Surface Effects to Glassy Behaviour in Ferrimagnetic Particles

A. Labarta, X. Battle and O. Iglesias

4.1 Frustration in ferrimagnetic oxides
4.2 Glassy behaviour in ferrimagnetic nanoparticles
4.3 Monte Carlo simulations
4.4 Open questions and perspectives

CHAPTER 5. Effect of Surface Anisotropy on the Magnetic Resonance Properties of Nanosize Ferroparticles

R. Perzynski and Yu.L. Raikher

5.1 Introduction
5.2 Spin perturbations in fine particles. Interplay of the exchange and surface energies
5.3 Spin-wave resonance in the presence of a uniaxial surface anisotropy
5.4 Experimental
5.5 FMR in a spherical particle with the Aharoni surface anisotropy
5.6 FMR in a spherical particle with rotable exchange Anisotropy
5.7 Concluding remarks

CHAPTER 6. Surface-Driven Effects on The Magnetic Behaviour of Oxide Nanoparticles

R.H. Kodama and A.E. Berkowitz

6.1 Introduction
6.2 Atomic-scale magnetic modeling
6.3 Ferrimagnetic nanoparticles
6.4 Antiferromagnetic nanoparticles
6.5 Remarks

CHAPTER 7. Exchange Coupling in Iron and Iron/Oxide Nanogranular Systems

L. Del Bianco, A. Hernando and D. Fiorani

7.1 Introduction
7.2 Nanocrystalline Fe
7.3 Fe/Fe oxide nanogranular system
7.4 Conclusions
Contents

CHAPTER 8. Surface and Interparticle Effects in Amorphous Magnetic Nanoparticles

R.D. Zysler, E. De Biasi, C.A. Ramous, D. Fiorani and H. Romero

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Introduction</td>
<td>239</td>
</tr>
<tr>
<td>8.2 The core-shell model</td>
<td>241</td>
</tr>
<tr>
<td>8.3 Sample characteristics</td>
<td>242</td>
</tr>
<tr>
<td>8.4 Non-interacting particles</td>
<td>243</td>
</tr>
<tr>
<td>8.5 Interacting nanoparticles</td>
<td>258</td>
</tr>
<tr>
<td>8.6 Conclusions</td>
<td>260</td>
</tr>
</tbody>
</table>

CHAPTER 9. Magnetic Anisotropy and Magnetization Reversal Studied in Individual Particles

W. Wernsdorfer

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 Introduction</td>
<td>263</td>
</tr>
<tr>
<td>9.2 Single-particle measurement techniques</td>
<td>265</td>
</tr>
<tr>
<td>9.3 Mechanisms of magnetization reversal at zero kelvin</td>
<td>268</td>
</tr>
<tr>
<td>9.4 Influence of temperature on the magnetization reversal</td>
<td>280</td>
</tr>
<tr>
<td>9.5 Conclusions</td>
<td>294</td>
</tr>
</tbody>
</table>

INDEX

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>299</td>
</tr>
</tbody>
</table>