Multilayered Low Temperature Cofired Ceramics (LTCC) Technology

Yoshihiko Imanaka
Fujitsu Laboratories, Ltd.
Japan

Springer
Contents

Dedication

List of Figures

List of Tables

Preface

Acknowledgments

1. Introduction

1.1 Brief historical review

1.2 Typical material

1.3 Typical manufacturing process

1.4 Typical product types

1.5 Characteristics of LTCC

1.5.1 High frequency characteristics

1.5.2 Thermal stability

(low thermal expansion, good thermal resistance)

1.5.3 Integration of passive components

1.6 Trends in materials developed by relevant companies

1.7 Subject of the book

References

Part 1 Material technology

2. Ceramic material

2.1 Introduction

2.2 Low temperature firing

2.2.1 Fluidity of glass

2.2.2 Crystallization of glass

2.2.3 Foaming of glass

2.2.4 Reaction between glass and ceramic

2.3 Dielectric characteristics

2.3.1 Dielectric constant

2.3.2 Dielectric loss

2.4 Thermal expansion

2.5 Mechanical strength
Contents

6. Casting
6.1 Introduction
6.2 Casting equipment
6.3 Slurry characteristics
6.4 Green sheet
6.4.1 Characteristics required of green sheets
6.4.2 Green sheet evaluation methods
6.4.3 Various factors affecting the characteristics of green sheets
6.4.4 Green sheet microstructure
6.4.5 Green sheet dimensional stability
6.5 Via hole punching
References

7. Printing and laminating
7.1 Printing
7.1.1 Screen printing screen specifications
7.1.2 Printing process conditions
7.1.3 Paste characteristics
7.1.4 Green sheet characteristics
7.2 Via filling
7.3 Laminating
7.3.1 Laminating process technologies
7.3.2 Faults arising in the laminating process
7.3.3 Preventing delamination
References

8. Cofiring
8.1 Sintering the copper
8.2 Controlling firing shrinkage
8.3 Mismatches of firing behavior and firing shrinkage rate
8.4 Achieving both antioxidation of the copper and elimination of binder
8.5 Non-shrinkage process
8.6 Cofiring process and future LTCCs
References

9. Reliability
9.1 Thermal shock of LTCCs
9.2 Thermal expansion and residual stress of LTCCs
9.3 Thermal conductivity of LTCCs
References
10. **Future of LTCCs**
 10.1 Introduction
 10.2 Technology development of LTCCs for the future
 10.2.1 Materials technology development
 10.2.2 Process technologies
 10.3 Background of post-LTCC technology
 10.3.1 AD process as a post-LTCC technology
 10.3.2 Current and future state of development of AD ceramic film

Acknowledgement
References

Index