Anthony W. Knapp

Basic Real Analysis

Along with a companion volume

Advanced Real Analysis

Birkhäuser
Boston • Basel • Berlin
CONTENTS

Preface ... xi
Dependence Among Chapters xiv
Guide for the Reader xv
List of Figures xviii
Acknowledgments xix
Standard Notation xxi

I. THEORY OF CALCULUS IN ONE REAL VARIABLE

1. Review of Real Numbers, Sequences, Continuity 2
2. Interchange of Limits 13
3. Uniform Convergence 15
4. Riemann Integral 26
5. Complex-Valued Functions 41
6. Taylor’s Theorem with Integral Remainder 43
7. Power Series and Special Functions 44
8. Summability 53
9. Weierstrass Approximation Theorem 58
10. Fourier Series 61
11. Problems 78

II. METRIC SPACES

1. Definition and Examples 83
2. Open Sets and Closed Sets 91
3. Continuous Functions 95
4. Sequences and Convergence 97
5. Subspaces and Products 102
6. Properties of Metric Spaces 105
7. Compactness and Completeness 108
8. Connectedness 115
9. Baire Category Theorem 117
10. Properties of $C(S)$ for Compact Metric S 121
11. Completion 127
12. Problems 130
VI. MEASURE THEORY FOR EUCLIDEAN SPACE (Continued)

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Change of Variables for the Lebesgue Integral</td>
<td>320</td>
</tr>
<tr>
<td>6. Hardy–Littlewood Maximal Theorem</td>
<td>327</td>
</tr>
<tr>
<td>7. Fourier Series and the Riesz–Fischer Theorem</td>
<td>334</td>
</tr>
<tr>
<td>8. Stieltjes Measures on the Line</td>
<td>339</td>
</tr>
<tr>
<td>10. Distribution Functions</td>
<td>350</td>
</tr>
<tr>
<td>11. Problems</td>
<td>352</td>
</tr>
</tbody>
</table>

VII. DIFFERENTIATION OF Lebesgue Integrals on the Line

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Differentiation of Monotone Functions</td>
<td>357</td>
</tr>
<tr>
<td>2. Absolute Continuity, Singular Measures, and Lebesgue Decomposition</td>
<td>364</td>
</tr>
<tr>
<td>3. Problems</td>
<td>370</td>
</tr>
</tbody>
</table>

VIII. FOURIER TRANSFORM IN EUCLIDEAN SPACE

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Elementary Properties</td>
<td>373</td>
</tr>
<tr>
<td>2. Fourier Transform on L^1, Inversion Formula</td>
<td>377</td>
</tr>
<tr>
<td>3. Fourier Transform on L^2, Plancherel Formula</td>
<td>381</td>
</tr>
<tr>
<td>4. Schwartz Space</td>
<td>384</td>
</tr>
<tr>
<td>5. Poisson Summation Formula</td>
<td>389</td>
</tr>
<tr>
<td>6. Poisson Integral Formula</td>
<td>392</td>
</tr>
<tr>
<td>7. Hilbert Transform</td>
<td>397</td>
</tr>
<tr>
<td>8. Problems</td>
<td>404</td>
</tr>
</tbody>
</table>

IX. L^p SPACES

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Inequalities and Completeness</td>
<td>409</td>
</tr>
<tr>
<td>2. Convolution Involving L^p</td>
<td>417</td>
</tr>
<tr>
<td>3. Jordan and Hahn Decompositions</td>
<td>418</td>
</tr>
<tr>
<td>4. Radon–Nikodym Theorem</td>
<td>420</td>
</tr>
<tr>
<td>5. Continuous Linear Functionals on L^p</td>
<td>424</td>
</tr>
<tr>
<td>6. Marcinkiewicz Interpolation Theorem</td>
<td>427</td>
</tr>
<tr>
<td>7. Problems</td>
<td>436</td>
</tr>
</tbody>
</table>

X. TOPOLOGICAL SPACES

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Open Sets and Constructions of Topologies</td>
<td>441</td>
</tr>
<tr>
<td>2. Properties of Topological Spaces</td>
<td>447</td>
</tr>
<tr>
<td>3. Compactness and Local Compactness</td>
<td>451</td>
</tr>
<tr>
<td>4. Product Spaces and the Tychonoff Product Theorem</td>
<td>458</td>
</tr>
<tr>
<td>5. Sequences and Nets</td>
<td>463</td>
</tr>
<tr>
<td>6. Quotient Spaces</td>
<td>471</td>
</tr>
</tbody>
</table>
X. TOPOLOGICAL SPACES (Continued)

7. Urysohn’s Lemma 474
8. Metrization in the Separable Case 476
9. Ascoli–Arzelà and Stone–Weierstrass Theorems 477
10. Problems 480

XI. INTEGRATION ON LOCALLY COMPACT SPACES 485

1. Setting 485
2. Riesz Representation Theorem 490
3. Regular Borel Measures 504
4. Dual to Space of Finite Signed Measures 509
5. Problems 517

XII. HILBERT AND BANACH SPACES 520

1. Definitions and Examples 520
2. Geometry of Hilbert Space 526
3. Bounded Linear Operators on Hilbert Spaces 535
4. Hahn–Banach Theorem 537
5. Uniform Boundedness Theorem 543
6. Interior Mapping Principle 545
7. Problems 549

APPENDIX 553

A1. Sets and Functions 553
A2. Mean Value Theorem and Some Consequences 559
A3. Inverse Function Theorem in One Variable 561
A4. Complex Numbers 563
A5. Classical Schwarz Inequality 563
A6. Equivalence Relations 564
A7. Linear Transformations, Matrices, and Determinants 565
A8. Factorization and Roots of Polynomials 568
A9. Partial Orderings and Zorn’s Lemma 573
A10. Cardinality 577

Hints for Solutions of Problems 581
Selected References 637
Index of Notation 639
Index 643