MANUAL OF PHOTOGRAMMETRY

FIFTH EDITION

American Society for Photogrammetry and Remote Sensing
CHAPTER 1
A BRIEF HISTORY OF PHOTOGRAMMETRY
David Alspaugh

1.1 What is Photogrammetry? 1
1.2 Precursors of Photogrammetry 2
1.3 Early Developments in Photogrammetry 4
1.4 The Impact of Aviation and Two World Wars: The Analog Era 6
1.5 The Impact of Electronic Computing and The Space Age: The Analytical Era 8
1.6 The Impact of Large Scale Computing/Storage and Electro-Optics: The Digital Era 11
1.7 The Success and Future of Photogrammetry 12

CHAPTER 2
MATHEMATICAL CONCEPTS IN PHOTOGRAMMETRY
Wolfgang Förstner, Bernhard Wrobel

2.1 General Mathematics
2.1.1 Linear Algebra 15
2.1.2 Rotations 35

2.2 Statistics and Estimation
2.2.1 Probability Theory 54
2.2.2 Estimation and Decision Theory 72
2.2.3 Classical Hypothesis Tests 76
2.2.4 ML and Least Squares Estimation 79
2.2.5 Evaluation 95
2.2.6 Robust Estimation 103

2.3 Projective Geometry
2.3.1 Homogeneous Representations of Points, Lines and Planes 111
2.3.2 Geometric Operations 124
2.3.3 Transformations 142
2.3.4 Projectivity, Invariants, and Perspectivity 153
2.3.5 Uncertainty of Geometric Entities 165

CHAPTER 3
THE MATHEMATICS OF PHOTOGRAMMETRY
Clifford J. Mugnier, Wolfgang Förstner, Bernhard Wrobel, Fidel Paderes, and Riadh Munjy

3.1 Geodetic Coordinate Systems
3.1.1 Latitude and Longitude 181
3.1.2 Three-Dimensional Coordinate Systems 188
3.1.3 Datums: The Three Dimensional Transformations 190
3.1.4 Map Projections: The Two Dimensional Transformations 194

3.2 Basic Image Geometry
3.2.1 The Geometry of the Single Image 211
3.2.2 The Geometry of the Image Pair 212
3.2.3 The Geometry of the Image Triplet 243
3.2.4 Synopsis 273

3.3 Time-Dependent Sensor Models
3.3.1 Types of Sensors 275
3.3.2 Coordinate Systems 279
3.3.3 Collinearity Equations 280
3.3.4 Interior Orientation 281
3.3.5 Time 282
Chapter 5

5.2.5 Color Spaces 406
5.2.6 Radiometric or Amplitude Sampling vs. Spatial or Geometric Sampling 410
5.2.7 Coping With Different Geometric Resolutions 411
5.2.8 Demosaicking the Bayer Pattern 413

5.3 Elementary Image Processing Operations 416
5.3.1 Histogram Operations 417
5.3.2 Conversion from Gray Values to Binary Images 419
5.3.3 Image Arithmetic 420

5.4 Filtering 421
5.4.1 Low Pass Filter 421
5.4.2 Gradient Processing 423
5.4.3 Unsharp Masking 426

5.5 Image Transforms 428
5.5.1 Fourier Transform 428
5.5.2 Cosine Transform 430
5.5.3 Wavelet Transform 431
5.5.4 Gabor transform 433
5.5.5 Principal Components (Karhunen-Loeve) Transform 434

5.6 Morphology 435
5.6.1 Dilation and Erosion 436
5.6.2 Opening and Closing 437
5.6.3 Shape Recognition by a Hit or Miss Operator 438
5.6.4 Some Additional Morphological Algorithms 439

5.7 Texture Processing 439
5.7.1 A Statistical Description of Texture 440
5.7.2 Structural Methods of Describing Texture 441
5.7.3 Spectral Representation of Texture 442

5.8 Image Resampling 442
5.8.1 The Two-Step Resampling Process 442
5.8.2 Geometric Processing Step 443
5.8.3 Radiometric Computation Step 443

5.9 Motion 444
5.9.1 Motion Blur 444
5.9.2 Motion and Moving Object Detection 445
5.9.3 Optical Flow 446

5.10 Image Data Structures 447
5.10.1 Matrix Data Structures 447
5.10.2 Two-Dimensional Chain-Coding 447
5.10.3 Hierarchical Data Structures 447
5.10.4 Volumetric Images 448

5.11 Image Compression 449

5.12 Digital Image Processing, Computer Vision, Image Understanding,... 450
How is this chapter related to other fields in processing digital visual information? 451
5.12.1 Applications- and Sensor-Neutral Areas 451
5.12.2 Applications- and Sensor-Inspired Areas 452

CHAPTER 6
BASIC COMPUTER VISION TECHNIQUES 455
George Vosselman, Monika Sester, and Helmut Mayer

6.1 Object Representations for Computer Vision 456
6.1.1 Types and Use of Object Characteristics 456
6.1.2 Geometric-topologic Object Descriptions 456
6.1.3 Knowledge Representation Forms 459
6.1.4 Linking Object Space and Image Space 461
6.1.5 Uncertainty 464
6.1.6 Knowledge Acquisition – Set Up of Object Descriptions 464

6.2 Feature Extraction 465
6.2.1 Point Features 465
6.2.2 Linear features 469
6.2.3 Region Features 478
6.2.4 Integrated feature extraction 481
6.2.5 Applications for Image Features in Photogrammetry 481

6.3 Image Matching 482
6.3.1 Classification of Image Matching Algorithms 483
6.3.2 Why matching algorithms may fail 483
6.3.3 Area-based Matching 484
6.3.4 Feature-based Matching 492
6.3.5 Hierarchical Image Matching 496
6.3.6 Constraints in matching 498
6.3.7 Applications in Photogrammetry 499

CHAPTER 7
DETECTORS AND SENSORS 505

Editor/authors: Ron Graham and Alexander Koh, Manos Baltsavias, Maria v. Schönermark, Albert J.P. Theuwissen, and Hartmut Ziemann

7.1 Basics of Radiometry 505
7.1.1 Introduction 505
7.1.2 Solar Radiation 505
7.1.3 Wave Optics 507
7.1.4 Temporal Coherence 507
7.1.5 Quantum Theory of Radiation 508
7.1.6 Radiometric and Photometric Terms and Quantities 510

7.2 Properties and Processing of Photographic Materials 513
7.2.1 Structure of photographic materials 513
7.2.2 Back-and-White and Color Materials 514
7.2.3 Photographic properties 516
7.2.4 Physical properties 531
7.2.5 Processing of Photographic Materials 533
7.2.6 Chemical development 534
7.2.7 Processing black-and-white film 537
7.2.8 Processing color negative film 538
7.2.9 Processing colour reversal film 540

7.3 Image Sensors for Photogrammetric Applications 542
7.3.1 Introduction 542
7.3.2 Solid-State Physics: A Summary 542
7.3.3 Photon Sensing 543
7.3.4 Signal Reading 544
7.3.5 Device Architecture 544
7.3.6 Color Imaging 546
7.3.7 Light Sensitivity 547
7.3.8 Noise 548
7.3.9 Conclusions 549

7.4 Signal to Noise Ratio 550
7.4.1 Introduction 550
7.4.2 Noise in Electro-Optical Systems 550
7.4.3 Noise in Synthetic Aperture Radar Systems 552

7.5 Spectral Characteristics 554
7.5.1 Introduction 554
7.5.2 Basis for the Selection of Spectral Filters 555
CHAPTER 8
CAMERAS AND SENSING SYSTEMS

Editor-Author: John Boland

8.1 Film Cameras
 8.1.1 Frame cameras
 8.1.2 Panoramic Cameras
 8.1.3 Strip Cameras

8.2 Digital cameras
 8.2.1 Imaging sensor technologies
 8.2.2 Airborne digital camera systems
 8.2.3 Satellite digital camera systems

8.3 Active Sensors
 8.3.1 Synthetic Aperture Radar (SAR)
 8.3.2 Light Detection and Ranging (Lidar)

8.4 System Performance Prediction by MTF Modeling
 8.4.1 Atmospheric MTF
 8.4.2 Optical MTF
 8.4.3 Optical Quality Factor
 8.4.4 Sampling MTF
 8.4.5 Detector Crosstalk MTF
 8.4.6 CCD Charge Transfer MTF
 8.4.7 Temporal MTF
 8.4.8 Electrical MTF
 8.4.9 Smear MTF
 8.4.10 Interpolation MTF
 8.4.11 Laser Image Recorder MTF
 8.4.12 Film MTF
 8.4.13 MTF Correction

8.5 Calibration
 8.5.1 Definitions
 8.5.2 Methods of Camera Calibration/Equipment
 8.5.3 Analytical Methods of Camera Calibration

CHAPTER 9
PHOTOGRAMMETRIC PLATFORMS

Editor-Author: Qassim A. Abdullah
Authors: James Collins, Kenneth Edmundson, Jacek Grodecki, Helmut Heier, Joe Hutton, Donn Liddle, Mohamed Mostafa, Charles Mondello, Kurt Novak, Roger Pacey, Bruno Scherzinger

9.1 Airborne Platforms
 9.1.1 Aircraft Platforms Overview
 9.1.2 Twin Engine Aircraft
 9.1.3 Single Engine Aircraft
 9.1.4 Other Platforms
9.2 Satellite Platforms
- **9.2.1 Introduction**
- **9.2.2 Attitude Determination and Control Subsystem**
- **9.2.3 Power Subsystem**
- **9.2.4 Thermal Subsystem**
- **9.2.5 Communication Subsystem**

9.3 Land-Based Platforms
- **9.3.1 Van-Based Mobile Mapping Systems**
- **9.3.2 Real-Time Videogrammetry Systems**

9.4 Auxiliary Systems
- **9.4.1 Satellite Surveying Systems**
- **9.4.2 Inertial Navigation Systems**
- **9.4.3 Stabilized Platforms**
- **9.4.4 Aerial Survey Flight Management System**

CHAPTER 10
CLASSICAL PHOTOGRAMMETRIC EQUIPMENT

Gordon Petrie, James Bethel, and Stewart Walker

10.1 Analog Stereo Equipment

10.2 Comparators
- **10.2.1 Comparators, Monocomparators and Stereocomparators**
- **10.2.2 Off-Line and On-Line Solutions**
- **10.2.3 Open- and Closed-Loop Systems**
- **10.2.4 Monocomparator Design and Construction**
- **10.2.5 Measuring Devices**
- **10.2.6 Alternative Designs**
- **10.2.7 Automated Monocomparators**
- **10.2.8 Digital Monoplotters**
- **10.2.9 Stereocomparator Design and Construction**
- **10.2.10 Classical Stereocomparators**
- **10.2.11 Demise of the Stereocomparator**
- **10.2.12 Image Space Plotters**

10.3 Instruments for Point Marking and Transfer
- **10.3.1 Signalized, Natural and Artificial Points**
- **10.3.2 Numbers and Locations of Points Requiring Marking and Transfer**
- **10.3.3 Optical Requirements**
- **10.3.4 Mechanical Requirements**
- **10.3.5 Devices Based on Drills or Needles**
- **10.3.6 Devices Based on Burned Holes**

10.4 Analytical Plotters
- **10.4.1 Stereocomparators with Attached Computers**
- **10.4.2 Open-Loop versus Closed-Loop Analytical Instruments**
- **10.4.3 Developments by Helava**
- **10.4.4 Analytical Plotter Solutions**
- **10.4.5 Early Developments**
- **10.4.6 The Advent of Mini-Computers**
- **10.4.7 Mainstream Analytical Plotters**
- **10.4.8 Lower Performance Analytical Plotters**
- **10.4.9 Analytical Plotters During the 1990s**
- **10.4.10 Current Situation**

10.5 Rectifiers

10.6 Orthorectifiers
- **10.6.1 Geometric Considerations**
- **10.6.2 Orthogonal Projection and Differential Rectification**
- **10.6.3 Orthophotomosaics and Orthophotomaps**
10.6.4 Orthoprojectors Based on Analog Stereo Projection 752
10.6.5 Optical Projection 752
10.6.6 Orthorectification of a Complete Photo 752
10.6.7 Height Data 753
10.6.8 Additional Rectifying Optical Projector 753
10.6.9 Off-Line Operation 753
10.6.10 Mechanical Projection 754
10.6.11 Optical Transfer 754
10.6.12 Off-Line Operations 754
10.6.13 Orthophotographs Produced by Analytical Plotters 755
10.6.14 Automated Production of Orthophotographs 755
10.6.15 Hardware Correlators on Analog Stereoplotters 756
10.6.16 B8 Stereomat 756
10.6.17 Analytical Plotters Equipped with Correlators 757
10.6.18 Gestalt Photo Mapper (GPM) 757
10.6.19 Bolt-on Correlator Units 757
10.6.20 Epipolar Line Correlation 757
10.6.21 Digital Orthophotographs 758

10.7 Endnote 758

CHAPTER 11
ANALYTICAL PHOTOGRA/MMETRIC OPERATIONS 763
Wolfgang Förstner, Bernhard Wrobel, Fidel Paderes, Robert Craig, Clive Fraser, and John Dolloff

11.1 Orientation and Reconstruction 763
11.1.1 Overview 763
11.1.2 Rectifying and Orienting a Single Image of a Planar Object using a 2D Homography 765
11.1.3 Orientation of a Single Image and Back-Projection of Points and Lines 771
11.1.4 Relative Orientation of Two Images 802
11.1.5 Reconstruction from Two or More Images 821
11.1.6 Spatial Similarity Transformation and Absolute Orientation 827
11.1.7 Orientation of the Image Pair 832
11.1.8 Orientation of Three Images 842
11.1.9 Historical Remarks 846

11.2 Block Triangulation 847
11.2.1 Observation Condition Equations 848
11.2.2 A priori Condition Equations 852
11.2.3 Triangulation Covariance Models 852
11.2.4 Reduced Normal Equations 854
11.2.5 Folded Normal Equations 856
11.2.6 Solution Techniques 859
11.2.7 Error Propagation 862
11.2.8 Exploitation of GPS/IMU Data 866
11.2.9 The Concept of Camera Self-Calibration 870
11.2.10 Free Network Adjustment 879
11.2.11 Triangulation of Satellite Images 884

11.3 Replacement Sensor Models 887
11.3.1 Introduction 887
11.3.2 Sensor model functionality 893
11.3.3 RSM detailed form 896
11.3.4 Geopositioning with RSM 913
11.3.5 RSM Generation 926
11.3.6 RSM development status and performance summary 936
CHAPTER 14
PHOTOGRAMMETRIC APPLICATIONS

Editor: Mostafa Madani
Section Authors: S.F. El-Hakim (14.1), Rongxing Li, Mohamed Mostafa, C. Vincent Tao and Charles Toth (14.2), Clive Fraser (14.3), David Chapman (14.4), Petros Patias (14.5), Larry Gillen, Clifford J Mugnier, Paul Lucas, Alan Walford (14.6), and Sherman S.C. Wu (14.7)

14.1 3-dimensional Reconstruction and Virtual Reality
14.1.1 Main Steps on the Construction of Virtual Environments
14.1.2 Data Collection and Registration
14.1.3 Geometric 3-dimensional Reconstruction
14.1.4 Texture Mapping
14.1.5 Rendering
14.1.6 Summary

14.2 Mobile Mapping
14.2.1 Mobile Mapping Principle
14.2.2 Sensors and Sensor Integration for Mobile Mapping
14.2.3 Feature Extraction from Mobile Mapping Images

14.3 Industrial and Engineering Measurement
14.3.1 The Development of Industrial Photogrammetry
14.3.2 Reverse Engineering of the Front End of a Tilt Train
14.3.3 Deformation Measurement of a Trainer Aircraft
14.3.4 Deformation Monitoring of an Ore Concentrator
14.3.5 Submarine Circularity Determination
14.3.6 Deformation Surveys of Reinforced Concrete Beams

14.4 As-built Modeling of Large and Complex Industrial Facilities
14.4.1 Motivations for As-built Modeling of Industrial Plants
14.4.2 As-built Measurement Techniques
14.4.3 Costs and Benefits for As-built Measurements
14.4.4 The Role of 3-dimensional Point Clouds, Image Archives and Other Intermediate Data Products

14.5 Overview of Applications of close-range Photogrammetry and Vision Techniques in Architecture and Archaeology
14.5.1 Overview of the Operational Framework
14.5.2 The Impact of New Technology
14.5.3 Classification of Applications
14.5.4 Conclusion

14.6 Forensic Investigation
14.6.1 Introduction
14.6.2 Legal Aspects and Case Study Summaries
14.6.3 Forensic Photogrammetry in Europe
14.6.4 Tools and Techniques

14.7 Extraterrestrial Photogrammetry
14.7.1 Introduction
14.7.2 Photogrammetric Control Networks for Extraterrestrial Bodies
14.7.3 Photogrammetric Mapping Using Orbital Photography
14.7.5 Radargrammetric mapping of Venus
14.7.6 Extraterrestrial Mapping by the Soviet Union
14.7.7 On-going Extraterrestrial Mapping Projects and Future Potential Planetary Missions
CHAPTER 15
PROJECT AND MISSION PLANNING

Mushtaq Hussain and James Bethel

15.1 Aerial Project and Mission Planning
 15.1.1 Project Definition
 15.1.2 Project Design
 15.1.3 Flight Mission Planning
 15.1.4 GPS Supported Photography

15.2 Mission Planning for Satellite Photogrammetry
 15.2.1 Introduction
 15.2.2 Camera
 15.2.3 Orbit
 15.2.4 Navigation Sensors and Stabilization
 15.2.5 Pointing Agility

COLOR INDEX

INDEX