PULSED LASER DEPOSITION OF THIN FILMS
APPLICATIONS-LED GROWTH OF FUNCTIONAL MATERIALS

Edited by
Robert Eason
Optoelectronics Research Centre
University of Southampton, UK
CONTENTS

PREFACE xix
CONTRIBUTORS xxi

SECTION 1

1. Pulsed Laser Deposition of Complex Materials:
 Progress Toward Applications 3
 David P. Norton
 1.1 Introduction 3
 1.2 What Is PLD? 4
 1.3 Where Is Pulsed Laser Deposition Being Applied? 9
 1.3.1 Complex Oxide Film Growth 9
 1.3.2 Epitaxial Interface and Superlattice Formation 10
 1.3.3 Superconducting Electronic Devices 11
 1.4 Exploring Novel Oxide Devices Concepts 14
 1.4.1 Tunable Microwave Electronics 15
 1.4.2 Wide Bandgap Electronics 17
 1.5 Thin-Film Optics 20
 1.6 Oxide Sensor Devices 21
 1.7 Protective Coatings and Barriers 23
 1.7.1 Biocompatible Coatings 24
 1.8 Nanomaterial Synthesis 25
 1.9 Polymer and Organic Thin Films 26
 1.9.1 Biological Thin-Film Materials 27
 1.10 Summary 28
 References 28

SECTION 2

2. Resonant Infrared Pulsed Laser Ablation and Deposition
 of Thin Polymer Films 35
 Daniel-Dennis McAlevy Bubb and Richard F. Haglund, Jr.
 2.1 Technological Significance of Organic Thin-Film Deposition 36
 2.2 Laser-Based Methods for Deposition of Polymer Thin Films: An Overview 37
 2.2.1 Pulsed Laser Deposition with UV Lasers 37
 2.2.2 Matrix-Assisted Pulsed Laser Evaporation 37

References
2.2.3 Photosensitized Ablation and Deposition 38
2.2.4 Resonant Infrared Pulsed Laser Deposition 39
2.2.5 Summary of Techniques 41

2.3 Deposition, Ablation, and Characterization of Selected Polymers 41
2.3.1 Characterization of Deposited Material 41
2.3.2 Choice of Polymers for Early Studies 44
2.3.3 Polyethylene Glycol 44
2.3.4 Polystyrene 47
2.3.5 Deposition of Application-Oriented Polymers by RIR-PLD 49

2.4 Mechanism of Resonant Infrared Laser Ablation 56
2.5 Lasers for Infrared Laser Ablation and Deposition 58
2.6 Conclusions 59
References 60

3. Deposition of Polymers and Biomaterials Using the Matrix-Assisted Pulsed Laser Evaporation (MAPLE) Process 63
Alberto Piqué
3.1 Introduction 63
3.2 Limitations of PLD for the Growth of Organic Thin Films 64
3.3 Fundamentals of the MAPLE Process 64
3.3.1 Growth of Polymer Thin Films 68
3.3.2 Growth of Biomaterial Thin Films 72
3.4 Current Status of MAPLE: Challenges and Opportunities 75
3.5 Future of MAPLE 79
3.6 Summary 82
References 82

4. In Situ Diagnostics by High-Pressure RHEED During PLD 85
Guus Rijnders and Dave H. A. Blank
4.1 Introduction 85
4.2 Basic Principles 85
4.3 High-Pressure RHEED 87
4.3.1 Geometry and Basic Principles of RHEED 87
4.3.2 Utility of RHEED: Surface Properties 90
4.3.3 Utility of RHEED: Monitoring Thin-Film Growth 92
4.4 High-Pressure RHEED Setup 93
4.5 Conclusions 96
References 97

5. Ultrafast Laser Ablation and Film Deposition 99
Eugene G. Gamaly, Andrei V. Rode, and Barry Luther-Davies
5.1 Introduction 99
5.2 Ablation by Short Independent Laser Pulses and Deposition of Films 101
5.2.1 Short-Pulse Laser–Matter Interaction 101
5.2.2 Ablation Mechanisms 105
5.2.3 Ablation Thresholds 107
5.2.4 Ablation Rate, Mass, and Depth 110
5.2.5 Atomization of Laser Plume: Spatial Pulse Shaping 111
5.3 Cumulative Ablation of Solids by High-Repetition-Rate Short-Pulse Lasers 117
 5.3.1 Dwell Time and Number of Pulses per Focal Spot 118
 5.3.2 Smoothing of the Evaporation Conditions on the Surface 119
 5.3.3 Ablation in Air and in Vacuum 119
5.4 Experimental Results: Deposition of Thin Films by Short-Pulse MHz Repetition Rate Laser 121
 5.4.1 Deposition of Amorphous Carbon Films 121
 5.4.2 Deposition of Chalcogenide Glass Films 122
5.5 Short-Pulse High-Repetition-Rate Laser Systems 123
 5.5.1 Table-top 50-W Solid-State Ultrafast Laser System 124
 5.5.2 Free-Electron Laser 125
5.6 Concluding Remarks 126
References 127

6. Cross-Beam PLD: Metastable Film Structures from Intersecting Plumes 131
André Gorbunoff

6.1 Introduction 131
 6.1.1 Energetic Particles in PLD 131
 6.1.2 Origin of Metastable Film Structures in PLD 134
6.2 Technique of Cross-Beam PLD 137
 6.2.1 Basic Idea and Instrumentation 137
 6.2.2 Spatio-energetical Characteristics of the Plume in CBPLD 139
6.3 Nanoscale Multilayer Deposition 144
 6.3.1 Morphological and Compositional Roughness in PLD 145
 6.3.2 Determination of the Compositional Profile 145
6.4 Abnormal Phase Formation in Co-deposited Alloys 149
 6.4.1 Amorphous Fe–Al Alloys 149
 6.4.2 Paramagnetic Fe–Cr Alloys 151
6.5 Conclusions 156
References 158

7. Combinatorial Pulsed Laser Deposition 161
Ichiro Takeuchi

7.1 Introduction 161
7.2 Combinatorial Approach to Materials 162
7.3 Pulsed Laser Deposition for Fabrication of Combinatorial Libraries 163
7.4 Synthesis Technique Using Thin-Film Precursors 163
7.5 High-Throughput Thin-Film Deposition 166
7.6 Combinatorial Laser Molecular Beam Epitaxy 168
7.7 Composition Spreads and Combinatorial Materials Science 171
7.8 Conclusion 175
References 175

8. Growth Kinetics During Pulsed Laser Deposition 177
Guus Rijnders and Dave H. A. Blank

8.1 Introduction 177
8.2 Growth Modes at Thermodynamic Equilibrium 177
CONTENTS

8.3 Growth Kinetics
 8.3.1 Homoepitaxial Growth Modes
 8.3.2 Homoepitaxial Growth Study of SrTiO₃

8.4 Pulsed Laser Interval Deposition

8.5 Conclusions

References

9. Large-Area Commercial Pulsed Laser Deposition
 Jim Greer
 9.1 Introduction
 9.2 Advances in Large-Area PLD Films
 9.3 Issues with Scale-Up for PLD
 9.3.1 Intelligent Windows
 9.3.2 Substrate Heaters
 9.3.3 Heaters for Coated Conductors
 9.3.4 Target Size and Manipulation
 9.3.5 Target Manipulation for Coated Conductors
 9.3.6 Deposition Rate Monitors
 9.4 Commercial Systems
 9.5 Commercial Components
 9.6 Conclusions

References

SECTION 3

10. Coating Powders for Drug Delivery Systems
 Using Pulsed Laser Deposition
 James D. Talton, Barbel Eppler, Margaret I. Davis, Andrew L. Mercado,
 and James M. Fitz-Gerald
 10.1 Introduction
 10.2 Background
 10.2.1 Wet Powder Coating Techniques
 10.2.2 Dry Powder Coating Techniques
 10.2.3 Deposition of Polymer Thin Films
 10.3 Laser-Assisted Methods of Coating Particles
 10.3.1 Experimental Configurations
 10.3.2 Polymeric Coating Materials
 10.3.3 Particle Fluidization
 10.4 Microencapsulated Pharmaceutical Formulations
 10.4.1 Characterization of Deposited Polymers
 10.4.2 Microencapsulated Inhaled Therapies
 10.5 Manufacturing and Scaleup
 10.6 Summary

References

11. Transparent Conducting Oxide Films
 Heungsoo Kim
 11.1 Introduction
CONTENTS

11.2 Unique Properties of TCO Films 240
 11.2.1 Electrical Properties 240
 11.2.2 Optical Properties 240
11.3 Advantages of PLD for TCO Films 241
11.4 Optimum PLD Conditions for TCO Films 242
 11.4.1 Substrate Deposition Temperature 242
 11.4.2 Oxygen Deposition Pressure 243
 11.4.3 Film Thickness 244
 11.4.4 Other Laser Conditions 244
11.5 Laser-Deposited TCO Films 245
 11.5.1 ITO Films 245
 11.5.2 Undoped and Doped ZnO Films 250
 11.5.3 Other n-Type TCO Films 251
 11.5.4 p-Type TCO Films 251
11.6 Applications of TCO Films 253
 11.6.1 Display Devices 253
 11.6.2 Photovoltaic Devices 256
 11.6.3 Transparent Thin-Film Field-Effect Transistor (FET) 257
11.7 Conclusion and Future Directions 258
References 258

12. ZnO and ZnO-Related Compounds 261
 Jacques Perrière, Eric Millon, and Valentin Craciun

 12.1 Introduction 261
 12.2 ZnO Thin-Film Growth by PLD: General Features 262
 12.2.1 Historical Background 262
 12.2.2 Surface Morphology and Texture 264
 12.2.3 Control of the Stoichiometry 265
 12.2.4 Recent Applications and Developments 267
 12.3 ZnO Epitaxial Thin Films 268
 12.3.1 ZnO Epitaxial Growth on Sapphire 269
 12.3.2 ZnO Epitaxial Growth on Other Substrates 273
 12.3.3 Epitaxial Growth of ZnO-Related Compounds 274
 12.3.4 Main Applications of Epitaxial ZnO Films 275
 12.4 ZnO Nanocrystalline Films 278
 12.4.1 Nanosecond PLD under High Oxygen Pressure 279
 12.4.2 Femtosecond PLD 281
 12.4.3 Applications of Nanocrystalline ZnO Films 282
 12.5 Conclusions and Future Perspectives 284
References 285

 Donagh O’Mahony and James G. Lunney

 13.1 Introduction 291
 13.2 Properties of Group III Nitrides and Group III Metals 292
 13.2.1 Group III Nitrides 292
 13.2.2 Thermal Decomposition of Group III Nitrides 292
13.2.3 Group III Elements: Al, Ga, and In 294
13.2.4 Target Preparation 295
13.3 Laser Ablation of Group III Nitrides and Group III Metals 295
13.3.1 General Characteristics of the Ablation Process in PLD 295
13.3.2 Characteristics of the Ablation Process in Vacuum 296
13.3.3 Plume-Background Gas Interaction 298
13.4 Guidelines for Film Growth 300
13.4.1 Setting the Growth Parameters 300
13.4.2 Film Growth in N₂ 301
13.4.3 Film Growth in Other Atmospheres 301
13.4.4 Substrates and Growth Temperature 302
13.5 Selective Review of the Properties of AlN, GaN, and InN Films Grown by PLD 302
13.5.1 Structural Properties 302
13.5.2 Electronic Properties 304
13.5.3 Optical Properties 304
13.6 Novel Areas of Research 305
13.6.1 Composites for Electronic and Optoelectronic Applications 305
13.6.2 Magnetic Doping: Diluted Magnetic Semiconductors for Spin Electronics 306
13.7 Summary and Outlook 307
References 308

14. Pulsed Laser Deposition of High-Temperature Superconducting Thin Films and Their Applications 313
Bernd Schey
14.1 Introduction 313
14.2 High-Temperature Superconductor Devices for Electronic and Medical Applications 314
14.2.1 High-Temperature Superconductor Communication 314
14.2.2 Digital Electronics 318
14.2.3 SQUID Systems 320
14.3 Electric Power and Energy 323
14.3.1 Applications of Coated Conductors 323
14.3.2 Coated Conductors: State of Development 324
14.3.3 Future Trends 326
14.4 Potential of PLD in the Commercialization of HTS 326
References 327

15. Diamond-Like Carbon: Medical and Mechanical Applications 333
Roger J. Narayan
15.1 Introduction 333
15.2 Physical and Chemical Properties of Carbon 333
15.3 Pulsed Laser Deposition of DLC 335
15.3.1 Effect of Wavelength and Fluence 335
15.3.2 Effect of Substrate Temperature and Vacuum 336
15.4 Modifications to the Pulsed Laser Deposition Technique 338
15.5 Growth of DLC Films 339
15.6 Reducing Internal Compressive Stress in DLC Thin Films 340
CONTENTS

15.7 Hydrogenated and Hydrogen-Free DLC 344
15.8 Properties of DLC 346
15.9 DLC Applications 347
 15.9.1 Medical Applications 347
 15.9.2 Mechanical and Tribological Applications 352
15.10 Closing Remarks 355
References 355

16. Pulsed Laser Deposition of Metals 363
Hans-Ulrich Krebs

16.1 Introduction 363
16.2 Deposition Technique 363
 16.2.1 Typical Setup 363
 16.2.2 Droplet Reduction 364
16.3 Energetic Particles 365
 16.3.1 Formation of Energetic Particles 365
 16.3.2 Influence on Film Growth 367
16.4 Deposition in Ultrahigh Vacuum 368
 16.4.1 Deposition Rate and Angular Distribution 368
 16.4.2 Stoichiometry Transfer 369
 16.4.3 Homogeneity of Alloy Films 369
 16.4.4 Improved Film Growth 369
 16.4.5 Small Grain Size 371
 16.4.6 Internal Stress 371
 16.4.7 Defect Formation 371
 16.4.8 Interface Mixing 372
 16.4.9 Interface Roughness 372
 16.4.10 Metastable Phase Formation at Interfaces 372
 16.4.11 Resputtering Effects 373
16.5 Deposition in Inert Gas Atmosphere 373
 16.5.1 Reduction of Implantation and Resputtering 373
 16.5.2 Changes in the Deposition Rate 373
 16.5.3 Changes of Film Properties 374
16.6 Potential for Applications 375
 16.6.1 Nonequilibrium Phases 375
 16.6.2 Giant Magnetoresistance 376
 16.6.3 Soft and Hard Magnetic Materials 376
 16.6.4 X-ray Mirrors 378
 16.6.5 Compound Materials 378
16.7 Conclusions 379
References 380

SECTION 4 383

17. Optical Waveguide Growth and Applications 385
Robert W. Eason, Stephen J. Barrington, Christos Grivas,
Timothy C. May-Smith, and David P. Shepherd

17.1 Introduction 385
17.2 Thin-Film Waveguide Fabrication Methods 386
 17.2.1 Waveguide Growth on an Existing Substrate 386
17.2.2 Waveguide Definition in an Existing Host 387
17.2.3 Pulsed Laser Deposition Waveguide Growth 387
17.3 Waveguide Structures 388
17.4 Optical Quality and Waveguide Loss 390
17.4.1 Waveguide Loss 391
17.4.2 Loss Measurement Techniques 392
17.4.3 Particulates on the Waveguide Surface 394
17.5 Waveguides Grown by PLD 396
17.5.1 Garnets 396
17.5.2 Oxide Materials 398
17.5.3 Ferroelectrics 399
17.5.4 Glasses 400
17.5.5 Semiconductors 400
17.6 Waveguide Lasing Devices 401
17.6.1 Introduction to PLD Waveguide Lasers and Active Optical Devices 401
17.6.2 Pulsed Laser Deposition Grown Waveguide Lasers 402
17.6.3 Future Directions 413
17.7 Conclusions and Closing Remarks: Tips for Successful Waveguide Growth 415
References 416

18. Biomaterials: New Issues and Breakthroughs for Biomedical Applications 421
Valentin Nelea, Ion N. Mihaiiescu, and Miroslav Jelínek

18.1 Introduction 421
18.2 Biomaterials 422
18.2.1 Biocompatible Materials Overview 422
18.2.2 Hydroxylapatite and Other Calcium Phosphates 423
18.2.3 Hydroxylapatite-Based Composites 425
18.2.4 Diamond-like Carbon and Carbon-Based Materials 425
18.3 Processing Methods 428
18.3.1 Current Deposition Methods: Advantages and Limitations 428
18.3.2 Pulsed Laser Deposition of Hydroxylapatite and Other Calcium Phosphate Thin Films 431
18.3.3 Pulsed Laser Deposition of Bioglass and Other Bioceramics 440
18.4 Characterization of Nanostructured Materials 441
18.4.1 Chemical Composition and Stoichiometry 441
18.4.2 Surface Morphology and Roughness Parameters 443
18.4.3 Structure and Crystallinity 443
18.4.4 Mechanical Properties and Performances 444
18.5 Biocompatibility Studies and Response to Living Media 448
18.5.1 Overview of Biomedical Tests 448
18.5.2 Biomedical Applications of Laser-Fabricated Hydroxylapatite and Bioglass Layers 449
18.5.3 Biomedical Application of Laser-Produced Carbon and DLC Thin Films 453
18.6 Development Trends 454
References 456
19. Thermoelectric Materials
Anne Dauscher and Bertrand Lenoir

19.1 Introduction 461
19.2 Current State of Thermoelectricity 462
19.3 Thermoelectric Thin Films 465
 19.3.1 Pulsed Laser Deposition of Conventional Thermoelectric Materials 465
 19.3.2 Pulsed Laser Deposition of New Thermoelectric Materials 475
19.4 Thermoelectric Microdevices and Applications 479
19.5 Conclusion 481
References 482

20. Piezoelectrics
Floriana Craciun and Maria Dinescu

20.1 Introduction 487
20.2 Optimization of the Deposition Conditions 488
 20.2.1 Piezoelectric Thin Films with Ferroelectric Properties 488
 20.2.2 Nonferroelectric Piezoelectrics 505
20.3 Dielectric and Piezoelectric Properties 506
 20.3.1 Effects of Internal Stress and Other Factors on Ferroelectric Piezoelectric Thin Films 506
 20.3.2 Finite Size Effects 515
 20.3.3 Domain-Wall Pinning and Relaxation 516
20.4 Applications 519
 20.4.1 Microelectronic Devices 519
 20.4.2 Microelectromechanical Systems (MEMS) 522
20.5 Conclusions and Future Perspectives 526
References 526

21. Ferroelectric Thin Films for Microwave Device Applications
Chonglin Chen and Jim S. Horwitz

21.1 Introduction 533
 21.1.1 Microwave Oscillators 534
 21.1.2 Microwave Phase Shifters 535
 21.1.3 Filters 535
21.2 Epitaxial Growth of Ferroelectric Thin Films by Pulsed Laser Ablation 535
 21.2.1 Optimal Growth Conditions and Effects on the Epitaxy 535
 21.2.2 Epitaxial Growth of Ferroelectric (Ba,Sr)TiO_3 Thin Films 539
 21.2.3 Epitaxial Growth of Ferroelectric (Pb,Sr)TiO_3 Thin Films 541
 21.2.4 Other Ferroelectric Thin Films 543
21.3 Characterizations of Ferroelectric Thin Films 544
 21.3.1 Microstructure, Composition, Surface Morphology, and Epitaxial Behavior 545
 21.3.2 Dielectric Properties of Ferroelectric Thin Films 549
21.4 Defects in Ferroelectric Thin Films at High Frequencies 550
 21.4.1 Point Defects 550
 21.4.2 Strain Effects on Dielectric Properties 552
21.4.3 Formation of Antidomain Structures in Ferroelectric Thin Films 554
21.4.4 Effects from Vicinal Surfaces 556
21.5 Techniques to Improve Dielectric Properties of Ferroelectric Thin Films 557
21.6 Summary 558
References 559

22. Films for Electrochemical Applications 563
Macarena J. Montenegro and Thomas Lippert

22.1 Introduction 563
22.1.1 Description and History of the Most Important Electrochemical Systems 564
22.2 Selected Electrochemical Materials Prepared by PLD 568
22.2.1 Spinel 568
22.2.2 Perovskites 569
22.3 Applications of PLD Films 569
22.3.1 Spinel in Li Ion Batteries 569
22.3.2 Perovskites in Solid Oxide Fuel Cells 574
22.3.3 Perovskites in Rechargeable Zn–Air Batteries 576
22.4 Other Electrochemically Active Materials Deposited by PLD 579
22.4.1 NASICON 579
22.4.2 Noble Metals in Polymer Electrolyte Membrane Fuel Cells 580
22.5 Future Directions: Diamond-like Carbon 581
22.6 Conclusion 581
References 582

23. Pulsed Laser Deposition of Tribological Coatings 585
Andrey A. Voevodin, Jeffrey S. Zabinski, and John G. Jones

23.1 Introduction 585
23.2 Pulsed Laser Deposition Configuration for Tribological Coating Growth 586
23.3 Correlations Between Process Parameters, Plasma Characteristics, and Tribological Coating Properties 587
23.3.1 Laser Wavelength and Fluence 587
23.3.2 Background Gas Effects and Target to Substrate Distance 588
23.3.3 Substrate Bias Influence 590
23.3.4 Substrate Temperature 591
23.4 Plasma Characterization, Sensors, and Process Control 592
23.4.1 Plasma Characterization 592
23.4.2 Real-Time Sensors 593
23.4.3 Process Control 593
23.5 Hybrids of PLD with Other Deposition Techniques 596
23.5.1 Hybrid of Magnetron Sputtering and Pulsed Laser Deposition 596
23.5.2 Hybrid of Ion Beam and Pulsed Laser Deposition 598
23.6 Tribological Coatings Produced by PLD and Hybrid Techniques 601
23.6.1 Monolithic Coatings 601
23.6.2 Functionally Gradient and Nanolayered Coatings 602
23.6.3 Nanocrystalline/Amorphous Composites 605
23.6.4 Multifunctional and Adaptive Coatings 606
23.7 Future Directions 607
References 608

SECTION 5 611

Andrê Gorbunoff and Oliver Jost

24.1 Introduction 613
24.2 Laser-Furnace Technique
24.2.1 Typical Experimental Setup 616
24.2.2 Characterization of SWNTs-Containing Soot 617
24.3 Solid–Liquid–Solid SWNT Formation Model
24.3.1 Condensed-State Process 620
24.3.2 Nucleation of SWNTs 622
24.3.3 Nonequilibrium Melting of Catalyst Particles 624
24.3.4 Wetting Factor 626
24.3.5 The SLS Model 626
24.3.6 First Second of the SWNT Life 627
24.3.7 Optimization of SWNT Synthesis 628
24.4 Conclusions 629
References 630

25. Quasicrystalline Thin Films 633
Philip R. Willmott

25.1 Introduction 633
25.2 Present Status of Thin-Film Growth of Quasicrystals
25.2.1 General Problems 635
25.2.2 Growth Techniques 635
25.3 Pulsed Laser Deposition of Quasicrystals 635
25.3.1 Why PLD? 635
25.4 Summary and Outlook 644
References 647

INDEX 649