Contents

Preface XI

1 Introduction 1
1.1 The Beginning 2
1.2 Subsequent Developments 5
1.3 The dc SQUID: A First Look 7
1.4 The rf SQUID: A First Look 12
1.5 Cryogenics and Systems 16
1.6 Instruments: Amplifiers, Magnetometers and Gradiometers 17
1.7 Applications 21
1.8 Challenges and Perspectives 24
1.9 Acknowledgment 26

2 SQUID Theory 29
2.1 Josephson Junctions 30
2.1.1 RCSJ Model 31
2.1.2 Thermal Noise 37
2.1.3 The 1/f Noise (I0, R fluctuations) 41
2.2 Theory of the dc SQUID 43
2.2.1 Introduction 43
2.2.2 Basic Equations, dc SQUID Potential 44
2.2.3 Thermal Fluctuations 50
2.2.3.1 General Considerations 50
2.2.3.2 Numerical Simulations (Langevin Equation) 53
2.2.3.3 Analytical Theory of the dc SQUID 59
2.2.4 Effect of Asymmetry 65
2.3 Theory of the rf SQUID 70
2.3.1 Introduction 70
2.3.2 SQUID Potential and the Equation of Motion for the Phase Difference 72
2.3.3 Unitary Theory for Output Signal and Noise 76
2.3.4 Noise as a Small Perturbation 83
2.3.4.1 Introduction 83

SQUID Handbook. J. Clarke and A. I. Braginski
Copyright © 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40229-2
3 SQUID Fabrication Technology 93

3.1 Junction Electrode Materials and Tunnel Barriers 94
3.2 Low-temperature SQUID Devices 96
3.2.1 Refractory Junction Electrodes 96
3.2.2 Tunnel Barrier Technology 97
3.2.3 Deposition Techniques 98
3.2.4 Junction Definition 101
3.2.5 Dielectric Insulation 102
3.2.6 Patterning Techniques 103
3.2.7 Passive Components for Device Fabrication 105
3.2.8 Integrated SQUID Fabrication Process 105
3.3 High-temperature SQUID Devices 107
3.3.1 General Requirements and Problems 107
3.3.2 Thin-film Deposition 108
3.3.3 Patterning Techniques 110
3.3.4 Junction Fabrication 112
3.3.5 Fabrication of Single-layer Devices 115
3.3.6 Fabrication of Multilayer Devices 116
3.3.7 Device Passivation and Encapsulation 118
3.4 Future Trends 118

4 SQUID Electronics 127

4.1 General 128
4.2 Basic Principle of a Flux-locked Loop 128
4.2.1 Linearization of the Transfer Function 128
4.2.2 Noise and Dynamic Behavior 131
4.2.3 Integrator Types 135
4.3 The dc SQUID Readout 137
4.3.1 Fundamentals 137
4.3.2 Methods to Suppress Pre amplifier Noise 139
4.3.2.1 Flux Modulation 139
4.3.2.2 Additional Positive Feedback 141
4.3.3 Methods to Suppress 1/f Noise 143
4.3.4 Further Readout Concepts 148
4.3.4.1 Two-stage Configuration 148
4.3.4.2 Series SQUID Arrays 149
4.3.4.3 Relaxation Oscillation SQUIDs 150
4.3.4.4 Digital SQUIDs 152
4.4 The rf SQUID Readout 155
4.4.1 General 155
4.4.2 Basic Building Blocks of rf SQUID Readout Electronics 155
4.4.3 Construction of the Tank Circuit 157
4.4.4 Coupling of the Tank Circuit to the Transmission Line 159
4.4.5 Cryogenic Preamplifiers 160
4.4.6 Optimization for Maximum Sensitivity 162
4.4.7 Multiplexed Readouts for Multichannel rf SQUID Systems 164
4.5 Trends in SQUID Electronics 165

5 Practical DC SQUIDS: Configuration and Performance 171
5.1 Introduction 172
5.2 Basic dc SQUID Design 175
5.2.1 Uncoupled SQUIDs 175
5.2.2 Coupled SQUIDs 177
5.3 Magnetometers 186
5.3.1 Overview 186
5.3.2 Magnetometers for High Spatial Resolution 187
5.3.3 Magnetometers for High Field Resolution 188
5.4 Gradiometers 193
5.4.1 Overview 193
5.4.2 Thin-Film Planar Gradiometers 195
5.4.3 Wire-Wound Axial Gradiometers 198
5.5 1/f Noise and Operation in Ambient Field 200
5.5.1 General Remarks on 1/f Noise 200
5.5.2 Critical Current Fluctuations 200
5.5.3 Thermally Activated Motion of Vortices 201
5.5.4 Generation of vortices 203
5.5.5 Reduction of 1/f Noise Generated by Vortex Motion 205
5.5.5.1 Overview 205
5.5.5.2 Vortex pinning 205
5.5.5.3 Narrow Linewidth Device Structures 206
5.5.5.4 Flux Dams 207
5.6 Other Performance Degrading Effects 208
5.6.1 Hysteresis 208
5.6.2 Radio-Frequency Interference 209
5.6.3 Temperature Fluctuations and Drift 210

6 Practical RF SQUIDs: Configuration and Performance 219
6.1 Introduction 220
6.2 RF SQUID Magnetometers 220
6.2.1 Practical Device Optimization 220
6.2.2 Low-Temperature rf SQUID Magnetometers 223
6.2.2.1 Low-Temperature Bulk Magnetometers 223
6.2.2.2 Low-Temperature Thin-Film Magnetometers 226
6.2.3 High-Temperature rf SQUID Magnetometers 228
6.2.3.1 Technological Limitations 228
6.2.3.2 Bulk High-\(T_c \) Magnetometers 229
6.2.3.3 Early Thin-Film High-\(T_c \) Magnetometers 229
6.2.3.4 Magnetometers with Coplanar Resonators 230
6.2.3.5 Magnetometers with Dielectric Resonators 234
6.2.3.6 Thin-Film HTS Magnetometers with Flux Transformers 235
6.3 Rf SQUID Gradiometers 236
6.3.1 Low-Temperature Gradiometers 236
6.3.2 High-Temperature Gradiometers 236
6.3.2.1 Hardware rf SQUID Gradiometers 236
6.3.2.2 Electronic rf SQUID gradiometers 237
6.4 Low-Frequency Excess Noise in rf SQUIDs 237
6.5 Response of rf SQUIDs to High-Frequency Electromagnetic Interference 239
6.6 Characterization and Adjustment of rf SQUIDs 241
6.7 The rf SQUID versus the dc SQUID 244
6.8 Concluding Remarks and Outlook 246

7 SQUID System Issues 251
7.1 Introduction 254
7.2 Cryogenics 255
7.2.1 Introduction 255
7.2.2 Liquid Cryogen Cooling (Cryostats) 256
7.2.3 Cryogenic Refrigerators (Cryocoolers) 258
7.2.3.1 Introduction 258
7.2.3.2 Joule-Thomson Coolers 259
7.2.3.3 Stirling Coolers 260
7.2.3.4 Gifford-McMahon Coolers 261
7.2.3.5 Pulse-tube Coolers 262
7.2.3.6 Comparison of Cryocoolers 264
7.2.3.7 Trends in Cryocooling 265
7.2.4 Cryostat or Cryocooler? 266
7.2.5 Cryocooler-interference Reduction 267
7.2.5.1 Interference Mechanisms 267
7.2.5.2 Time Separation 268
7.2.5.3 Space Separation 268
7.2.5.4 Low-noise Coolers 269
7.2.5.5 Noise Suppression Techniques 269
7.2.6 Material Properties 270
7.3 Cabling and Electronics 272
7.3.1 Shielding and Filtering of Noise Sources 272
7.3.1.1 Introduction to Shielding Effectiveness 272
7.3.1.2 Absorption 273
7.3.1.3 Reflection 274
7.3.1.4 High-frequency Shielding 276
7.3.1.5 Low-frequency Shielding 277
7.3.1.6 Filtering in an Unshielded Urban Environment 281