Optical Propagation in Linear Media

Atmospheric Gases and Particles, Solid-State Components, and Water

Michael E. Thomas
PART I: BACKGROUND THEORY AND MEASUREMENT

1 Optical Electromagnetics I, 3
 1.1 Introduction, 3
 1.1.1 The Electromagnetic Spectrum, 3
 1.1.2 Classical and Quantum Concepts, 5
 1.2 Macroscopic Properties in Vacuum, 7
 1.2.1 Plane-Wave Propagation, 7
 1.2.2 Diffraction: Physical Optics, 12
 1.3 Optical Propagation in Vacuum, 16
 1.3.1 Beam Propagation, 16
 1.3.2 Pulse Propagation, 19

 Problems, 20
 Notes, 21
 Bibliography, 23

2 Optical Electromagnetics II, 25
 2.1 Macroscopic Properties in Matter, 25
 2.1.1 Plane-Wave Propagation and Linear Response Theory, 25
 2.1.2 Elastic Scattering: Physical Optics, 55
2.2 Optical Propagation in Matter, 70
 2.2.1 Beam Propagation, 70
 2.2.2 Pulse Propagation, 71

2.3 Microscopic Properties in Matter, 71
 2.3.1 The Dipole Moment, 72
 2.3.2 Polarizability, 73

Problems, 74

Bibliography, 76

3 Spectroscopy of Matter, 77
 3.1 Quantum Mechanics I, 77
 3.1.1 Early Quantum Mechanics and Light, 77
 3.1.2 Formal Introduction, 79
 3.1.3 Wave and Matrix Mechanics, 81
 3.1.4 Single-Particle Propagation, 83
 3.2 Introduction to Spectroscopy, 84
 3.2.1 Line Position, Strength, and Shape, 84
 3.2.2 Dipole Moments and Selection Rules, 87
 3.3 Spectroscopy of Gases, 89
 3.3.1 Rotational Spectroscopy, 90
 3.3.2 Vibrational Spectroscopy, 96
 3.3.3 Electronic Spectroscopy, 111
 3.4 Spectroscopy of Solids, 112
 3.4.1 Lattice Vibrations and Phonons, 113
 3.4.2 Electronic Structure, 122
 3.5 Spectroscopy of Liquids, 127
 3.5.1 Orientational Polarizability, 127
 3.5.2 Vibrational and Electronic Structure, 129

Problems, 130

Bibliography, 132

4 Electrodynamics I: Macroscopic Interaction of Light and Matter, 133
 4.1 Classical Electrodynamics, 134
 4.2 Classical Oscillator Model, 134
 4.2.1 Gases at Low Density, 134
 4.2.2 Lorentz–Lorenz Formula, 141
 4.2.3 Solids and the Classical Oscillator Model, 142
CONTENTS xiii

4.2.4 Time-Domain Susceptibility for Lattice Vibrations, 149
4.2.5 Free Carriers and Debye Relaxation, 150
4.2.6 Dyadic Permittivity, 156

4.3 Reflection and Refraction at a Plane Boundary, 157
 4.3.1 Cubic Media, 158
 4.3.2 Biaxial and Uniaxial Media, 161

4.4 Single Scattering, 162
 4.4.1 Rayleigh Scattering, 162
 4.4.2 Mie Scattering, 165
 4.4.3 Rayleigh–Gans Scattering, 170

Problems, 172
Bibliography, 174

5 Electrodynamics II: Microscopic Interaction of Light and Matter, 175

5.1 Quantum Optics, 175

5.2 Statistical Distribution Functions, 176
 5.2.1 Maxwell–Boltzmann Statistics, 176
 5.2.2 Fermi–Dirac Statistics, 180
 5.2.3 Bose–Einstein Statistics, 180

5.3 Quantum Mechanics II, 182
 5.3.1 Time-Dependent Perturbation Theory, 182
 5.3.2 Fermi’s Golden Rule, 185
 5.3.3 Density Matrix Formalism, 187

5.4 Semiclassical Oscillator Model, 189

5.5 The Einstein Relation and Spontaneous Emission, 193

5.6 Quantum Optics of Low-Density Gases, 195
 5.6.1 Formal Development, 195
 5.6.2 Line Strength, 200
 5.6.3 Line Shape Profiles, 201
 5.6.4 Refractivity, 212

5.7 Quantum Electronics, 213
 5.7.1 Electronic Band-to-Band Transitions, 213
 5.7.2 Exciton Band Absorption, 217
 5.7.3 Band Edge Absorption and Urbach’s Rule, 218

Problems, 220
Bibliography, 222
6 Experimental Techniques, 225

6.1 Refractive Index and Absorption Coefficient Measurements, 225
 6.1.1 Transmission and Reflection Measurements, 226
 6.1.2 Laser Techniques, 243
 6.1.3 Ellipsometry, 246
 6.1.4 Refractometry, 247
 6.1.5 Broad-Band Interferometry, 248
 6.1.6 Emissometry, 251

6.2 Scatter Measurements, 252
 6.2.1 Scatterometers, 252
 6.2.2 Integrating Spheres, 256

Problems, 257

Bibliography, 259

PART II: PRACTICAL MODELS FOR VARIOUS MEDIA

7 Optical Propagation in Gases and the Atmosphere of the Earth, 263

7.1 The Atmosphere of the Earth, 263
 7.1.1 Atmospheric Structure, 264
 7.1.2 Gas Composition, 264
 7.1.3 Particle Composition, 268
 7.1.4 Pressure Variation with Altitude, 269

7.2 Molecular Absorption and Refraction, 271
 7.2.1 Absorption by Atmospheric Gases, 271
 7.2.2 HITRAN Database, 300
 7.2.3 Band Models, 304
 7.2.4 Refractive Effects of the Atmosphere, 311

7.3 Molecular Scattering, 328
 7.3.1 Molecular Rayleigh Scatter, 328
 7.3.2 Blue Sky Background, 329

7.4 Applications and Computer Codes, 330
 7.4.1 Remote Sensing of Gases, 330
 7.4.2 Synthetic Spectra, 336
 7.4.3 Human Breath Spectra, 337
 7.4.4 Computer Codes, 337

Problems, 342

Note, 344

Bibliography, 344
8 Optical Propagation in Solids, 353

8.1 Solid-State Optics, 353
 8.1.1 Classification of Materials, 353
 8.1.2 Thermal, Mechanical, and Chemical Properties, 354

8.2 Absorption and Refraction, 361
 8.2.1 Crystalline Insulators, 361
 8.2.2 Amorphous Insulators: Glasses, 392
 8.2.3 Semiconductors, 397
 8.2.4 Metals, 402

8.3 Scattering, 404
 8.3.1 Intrinsic, 404
 8.3.2 Extrinsic, 405

8.4 Computer Codes and Examples, 407
 8.4.1 OPTIMATR, 409
 8.4.2 Reflectance and Emittance Calculations of Bulk Materials and Coatings, 409
 8.4.3 Athermal Materials, 412
 8.4.4 Optical Fibers, 413
 8.4.5 Pyrometry, 417

Problems, 419

Bibliography, 423

9 Optical Propagation in Water, 427

9.1 Optical Properties of Pure Water, 427
 9.1.1 Debye Relaxation, 427
 9.1.2 Vibrational Modes, 429
 9.1.3 Electronic Band Edge, 432
 9.1.4 Scattering, 432

9.2 Seawater, 434
 9.2.1 Introduction to Optical Oceanography, 434
 9.2.2 Absorption and Refraction, 436
 9.2.3 Scattering, 438

9.3 Applications, 438
 9.3.1 Ocean Reflectance and Emittance, 438
 9.3.2 Biomedical Media, 439

Problems, 441

Bibliography, 441
10 Particle Absorption and Scatter, 443

10.1 Particle Distributions and Composition, 443
 10.1.1 Particle Size Distribution Function, 443
 10.1.2 Particle Vertical Concentration Profile, 444
 10.1.3 Particle Composition, 445

10.2 Particle Absorption and Scatter, 446
 10.2.1 Extinction Coefficient, 446
 10.2.2 Visibility Range, 448
 10.2.3 Henyey-Greenstein Phase Function, 448
 10.2.4 Humidity and Cross-Section, 449

10.3 Scatter and Atmospheric Optics, 449
 10.3.1 Raindrops and Rainbows, 450
 10.3.2 Ice Crystal Effects, 451
 10.3.3 Clouds and Cloud Color, 451
 10.3.4 Fog, 452

10.4 Scatter and Ocean Optics, 453

10.5 Computer Codes and Examples, 454
 10.5.1 MODTRAN, 454
 10.5.2 Imaging within Scattering Media, 456

Problems, 456

Bibliography, 457

11 Propagation Background and Noise, 459

11.1 Path and Background Emission, 459

11.2 Scattering into the Path, 463

11.3 Photon Noise, 464

11.4 Examples of Path Emission and Scatter, 465
 11.4.1 Clear Sky Radiance, 465
 11.4.2 Detector Window Radiance, 467
 11.4.3 Atmospheric Spectral Radiance, 468
 11.4.4 Solar Reflection and Scatter, 471

Problems, 473

Bibliography, 473

Appendix 1: Symbols and Units, 475

Appendix 2: Special Functions, 479
Appendix 3: Hilbert and Fourier Transforms, 483
Appendix 4: Model Parameters for Gases, Liquids, and Solids, 491
Appendix 5: Electromagnetic Field Quantization, 547
Index, 553