Contents

Series Preface xviii
Preface to the Sixth Edition xx

PART ONE FUNDAMENTALS

1 Spectral Colour Reproduction 3
 1.1 Introduction 3
 1.2 The spectrum 3
 1.3 The micro-dispersion method of colour photography 5
 1.4 The Lippmann method 6
 1.5 Use of identical dyes 7
 1.6 Approximate spectral colour reproduction 7
 1.7 A simplified approach 7

2 Trichromatic Colour Reproduction and the Additive Principle 9
 2.1 Introduction 9
 2.2 Maxwell's method 9
 2.3 The physiology of human colour vision 10
 2.4 Spectral sensitivity curves of the retina 11
 2.5 Unwanted stimulations 13

3 Additive Methods 18
 3.1 Introduction 18
 3.2 The successive frame method 18
 3.3 The mosaic method 19
 3.4 The lenticular method 21
 3.5 The virtual-image method 23
 3.6 The diffraction method 23
 3.7 Errors in additive methods 24

4 The Subtractive Principle 25
 4.1 Introduction 25
 4.2 The subtractive principle 26
 4.3 Defects of the subtractive principle 27

5 Visual Appreciation 31
 5.1 Introduction 31
 5.2 The basis of judgement 32
 5.3 Variations of hue 33
5.4 Variations of lightness 34
5.5 Variations of colourfulness 34
5.6 Priorities 36
5.7 Factors affecting apparent colour balance 41
5.8 Integrating to grey 44
5.9 The perception of depth 45

6 Tone Reproduction 47
6.1 Introduction 47
6.2 Identical viewing conditions 47
6.3 Characteristic curves 47
6.4 Different luminance levels 48
6.5 Different surround conditions 55
6.6 Complications with solid objects 59
6.7 Comparisons of transparencies and reflection prints 59
6.8 Colourfulness 60
6.9 Exposure latitude 60
6.10 Tone reproduction in duplicating 61
6.11 Tone reproduction in television 65
6.12 Lighting geometry 65
6.13 Conclusions 65

7 The Colour Triangle 68
7.1 Introduction 68
7.2 Colour terminology 68
7.3 Trichromatic matching 70
7.4 Colour-matching functions 74
7.5 The colour triangle 78
7.6 The centre of gravity law 79
7.7 Other colour triangles 81
7.8 Additive colour reproduction 83
7.9 The Ives-Abney-Yule compromise 85
7.10 Colour gamuts of reflecting and transmitting colours 88
7.11 Two-colour reproductions 88

8 Colour Standards and Calculations 92
8.1 Introduction 92
8.2 Standard illuminants 92
8.3 The Standard Observers 94
8.4 Colour transformations 96
8.5 Properties of the XYZ system 101
8.6 Uniform chromaticity diagrams 104
8.7 Nomograms 107
8.8 Uniform colour spaces 109
8.9 Subjective effects 116
8.10 Haploscopic matching 116
8.11 Subjective colour scaling
- Page: 118

8.12 Physical colour standards
- Page: 123

8.13 Whiteness
- Page: 123

9 The Colorimetry of Subtractive Systems
- Page: 126

9.1 Introduction
- Page: 126

9.2 Subtractive chromaticity gamuts
- Page: 126

9.3 Subtractive gamuts in the colour solid
- Page: 128

9.4 Spectral sensitivities for block dyes
- Page: 132

9.5 Spectral sensitivities for real dyes
- Page: 134

9.6 MacAdam's analysis
- Page: 135

9.7 Umberger's analysis
- Page: 135

9.8 Two-colour subtractive systems
- Page: 137

9.9 Subtractive quality
- Page: 138

10 Light Sources
- Page: 139

10.1 Introduction
- Page: 139

10.2 Tungsten lamps
- Page: 139

10.3 Spectral-power converting filters
- Page: 142

10.4 Daylight
- Page: 146

10.5 Fluorescent lamps
- Page: 150

10.6 Sodium, mercury, and metal-halide lamps
- Page: 151

10.7 Xenon arcs
- Page: 152

10.8 Carbon arcs
- Page: 154

10.9 Photographic flash-bulbs
- Page: 155

10.10 The red-eye effect
- Page: 155

10.11 Correlated colour temperatures of commonly used light sources
- Page: 155

10.12 Colour rendering of light sources
- Page: 156

10.13 Visual clarity
- Page: 159

10.14 Polarization
- Page: 160

10.15 Light Emitting Diodes (LEDs)
- Page: 161

11 Objectives in Colour Reproduction
- Page: 163

11.1 Introduction
- Page: 163

11.2 Comparative methods
- Page: 163

11.3 Absolute methods
- Page: 164

11.4 Spectral colour reproduction
- Page: 164

11.5 Colorimetric colour reproduction
- Page: 166

11.6 Exact colour reproduction
- Page: 167

11.7 Equivalent colour reproduction
- Page: 168

11.8 Colorimetric colour reproduction as a practical criterion
- Page: 171

11.9 Corresponding colour reproduction
- Page: 172

11.10 Preferred colour reproduction
- Page: 174

11.11 Degree of metamerism
- Page: 177

11.12 Conclusions
- Page: 178
PART TWO COLOUR PHOTOGRAPHY

12 Subtractive Methods in Colour Photography 183
12.1 Introduction 183
12.2 Relief images 183
12.3 Colour development 185
12.4 Integral tripacks 186
12.5 Processing with the couplers incorporated in the film 187
12.6 Reversal processing 189
12.7 Processing with the couplers in developers 190
12.8 The philosophy of colour negatives 191
12.9 Subtractive methods for amateur use in still photography 192
12.10 Subtractive methods for professional use in still photography 193
12.11 Subtractive methods for motion-picture use 194
12.12 Motion-picture frame rates 197

13 Reflection Prints in Colour 199
13.1 Introduction 199
13.2 Direct reflection-print systems 199
13.3 Reversal-reversal (positive-positive) systems 200
13.4 Negative-positive systems 200
13.5 Internegative systems 200
13.6 Printing from electronic images 201
13.7 Basic difficulties in reflection prints 201
13.8 Effect of surround 201
13.9 Inter-reflections in the image layer 201
13.10 Luminance ranges 204
13.11 Luminance levels 207
13.12 Geometry of illumination and viewing 210

14 Quantitative Colour Photography 212
14.1 Introduction 212
14.2 Sensitometric pictures 213
14.3 Sensitometric wedges 213
14.4 Uniformity of illumination 214
14.5 Exposure time 214
14.6 Light sources for sensitometry 215
14.7 Transmission colour of lenses 216
14.8 Selective exposure of layers 216
14.9 Latent image changes 216
14.10 Controlled processing 216
14.11 Visual evaluation 218
14.12 Logarithmic scales 218
14.13 Densitometers 219
14.14 Specular and diffuse transmission densities 221
14.15 Printing densities 222
14.16 Integral densities 227
14.17 Some effects of curve shape 231
CONTENTS

14.18 Colorimetric densities 233
14.19 Spectral densities 235
14.20 Analytical densities 235
14.21 Reflection densities 237
14.22 Analytical reflection densities 237
14.23 Exposure densities 238
14.24 Scales of equal Visual increments 239
14.25 Tri-linear plots 240
14.26 Stability of dye images 240
14.27 Photographic speed 241

15 Masking and Coloured Couplers 244
15.1 Introduction 244
15.2 Contrast masking 244
15.3 Unsharp masking 247
15.4 Coloured couplers 247
15.5 Inter-image effects 251
15.6 Masking when making separations 253
15.7 Masking for colorimetric colour reproduction 255
15.8 Masking for approximate colour reproduction 258
15.9 Calculation of mask gammas 260

16 Printing Colour Negatives 262
16.1 Introduction 262
16.2 Printing studio negatives 262
16.3 Printing motion-picture negatives 263
16.4 Printing amateurs’ negatives 263
16.5 The variables to be corrected 264
16.6 Early printers 264
16.7 Integrating to grey 265
16.8 The 1599 printer 266
16.9 Variable time printers 268
16.10 Subtractive printers 268
16.11 Colour enlargers 270
16.12 Automatic classification 270
16.13 Factors affecting slope control 270
16.14 Methods of slope control 274
16.15 Electronic printing 274

17 The Chemistry of Colour Photography 277
17.1 Colour development 277
17.2 Developing agents 279
17.3 Couplers 281
17.4 Coloured couplers 286
17.5 The dye-coupling reaction 287
17.6 The physical form of dye images 288
17.7 Colour developing solutions 288
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.8</td>
<td>Silver bleaching</td>
<td>290</td>
</tr>
<tr>
<td>17.9</td>
<td>Processing sequences</td>
<td>290</td>
</tr>
<tr>
<td>17.10</td>
<td>Dye-bleach and dye-removal systems</td>
<td>292</td>
</tr>
<tr>
<td>17.11</td>
<td>Development-inhibitor-releasing (DIR) couplers</td>
<td>298</td>
</tr>
<tr>
<td>18.1</td>
<td>Introduction</td>
<td>300</td>
</tr>
<tr>
<td>18.2</td>
<td>Magnifications</td>
<td>300</td>
</tr>
<tr>
<td>18.3</td>
<td>Graininess and granularity</td>
<td>305</td>
</tr>
<tr>
<td>18.4</td>
<td>Granularity of silver images</td>
<td>305</td>
</tr>
<tr>
<td>18.5</td>
<td>Noise power spectra</td>
<td>307</td>
</tr>
<tr>
<td>18.6</td>
<td>Graininess in prints</td>
<td>310</td>
</tr>
<tr>
<td>18.7</td>
<td>Granularity of colour images</td>
<td>310</td>
</tr>
<tr>
<td>18.8</td>
<td>Reducing granularity of colour systems</td>
<td>316</td>
</tr>
<tr>
<td>18.9</td>
<td>Sharpness</td>
<td>317</td>
</tr>
<tr>
<td>18.10</td>
<td>Focusing</td>
<td>320</td>
</tr>
<tr>
<td>18.11</td>
<td>Depth of field</td>
<td>320</td>
</tr>
<tr>
<td>18.12</td>
<td>Modulation transfer functions</td>
<td>321</td>
</tr>
<tr>
<td>18.13</td>
<td>Photographic modulation transfer functions</td>
<td>323</td>
</tr>
<tr>
<td>18.14</td>
<td>Acutance</td>
<td>326</td>
</tr>
<tr>
<td>18.15</td>
<td>Sharpness of colour images</td>
<td>327</td>
</tr>
<tr>
<td>18.16</td>
<td>Increasing sharpness of colour films</td>
<td>329</td>
</tr>
<tr>
<td>18.17</td>
<td>Mottle on papers</td>
<td>331</td>
</tr>
<tr>
<td>18.18</td>
<td>Image structure in transfer systems</td>
<td>331</td>
</tr>
</tbody>
</table>

PART THREE COLOUR TELEVISION

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.1</td>
<td>Historical introduction</td>
<td>335</td>
</tr>
<tr>
<td>19.2</td>
<td>Bandwidth</td>
<td>335</td>
</tr>
<tr>
<td>19.3</td>
<td>Interlacing</td>
<td>336</td>
</tr>
<tr>
<td>19.4</td>
<td>Single side-band transmission</td>
<td>338</td>
</tr>
<tr>
<td>19.5</td>
<td>The field sequential system</td>
<td>339</td>
</tr>
<tr>
<td>19.6</td>
<td>Blue saving</td>
<td>340</td>
</tr>
<tr>
<td>19.7</td>
<td>Band saving</td>
<td>341</td>
</tr>
<tr>
<td>19.8</td>
<td>Colour-difference signals</td>
<td>344</td>
</tr>
<tr>
<td>19.9</td>
<td>Band sharing</td>
<td>346</td>
</tr>
<tr>
<td>19.10</td>
<td>The effect of band sharing on monochrome receivers</td>
<td>348</td>
</tr>
<tr>
<td>19.11</td>
<td>Carrier sharing</td>
<td>349</td>
</tr>
<tr>
<td>19.12</td>
<td>The effects of signal processing on colour reproduction</td>
<td>350</td>
</tr>
<tr>
<td>19.13</td>
<td>Gamma correction</td>
<td>353</td>
</tr>
<tr>
<td>19.14</td>
<td>Noise reduction</td>
<td>354</td>
</tr>
<tr>
<td>19.15</td>
<td>Direct broadcasting by satellite (DBS)</td>
<td>355</td>
</tr>
<tr>
<td>19.16</td>
<td>High definition television (HDTV)</td>
<td>355</td>
</tr>
<tr>
<td>19.17</td>
<td>Signals used in video-compression systems</td>
<td>357</td>
</tr>
<tr>
<td>19.18</td>
<td>Videoconferencing</td>
<td>358</td>
</tr>
</tbody>
</table>
20 Electronic Cameras
20.1 Introduction
20.2 Early camera tubes
20.3 Tubes suitable for colour
20.4 Spectral sensitivities of television camera tubes
20.5 Charge-coupled device (CCD) sensors
20.6 Camera arrangements
20.7 Image equality in colour cameras
20.8 R-Y-B cameras
20.9 Four-sensor cameras
20.10 Automatic registration
20.11 Spectral sensitivities used in cameras
20.12 Aperture correction
20.13 Electronic news gathering (ENG)
20.14 Camcorders
20.15 Electronic still cameras

21 Display Devices for Colour Television
21.1 Introduction
21.2 The trinoscope
21.3 Triple projection
21.4 The shadow-mask tube
21.5 The Trinitron
21.6 Self-converging tubes
21.7 Light-valve projectors
21.8 Liquid crystal displays (LCDs)
21.9 Laser displays
21.10 Beam-penetration tubes
21.11 Light emitting diode (LED) displays
21.12 Plasma displays
21.13 Phosphors for additive receivers
21.14 The chromaticity of reproduced white
21.15 The luminance of reproduced white
21.16 Reflective displays

22 The N.T.S.C. and Similar Systems of Colour Television
22.1 Introduction
22.2 N.T.S.C. chromaticities
22.3 The luminance signal
22.4 \((R)(G)(B)\) to \((X)(Y)(Z)\) transformation equations
22.5 The effects of variations in chrominance-signal magnitude
22.6 The effect of gamma correction on \(E_R - E_Y\) and \(E_B - E_Y\)
22.7 The effect of gamma correction on \(E_Y\)
22.8 The P.A.L. and S.E.C.A.M. systems
22.9 The N.T.S.C. system
22.10 Blue saving in the N.T.S.C. system
22.11 Gamma correction in the N.T.S.C. system
CONTENTS

22.12 Maximum signal amplitudes 413
22.13 Cross-talk between E_1' and E_Q' 413
22.14 The effect of the chrominance sub-carrier on the display 416
22.16 Some useful graphical constructions 417
22.17 Some useful equations 423

23 The Use of Colour Film in Colour Television 427
23.1 Introduction 427
23.2 Filming and televising techniques 427
23.3 Combined film and television cameras 429
23.4 Choice of film 429
23.5 Deriving television signals from colour film 430
23.6 Telecines using fast pull-down 431
23.7 Telecines using camera-tubes 431
23.8 Telecines giving 60 fields per second 431
23.9 Flying-spot scanners 432
23.10 Telecines using solid-state sensors 433
23.11 Teletrecording 434
23.12 Electronic adjustment of signals derived from colour film 435
23.13 Electronic masking 436
23.14 Overall transfer characteristics 439
23.15 Reviewing colour films for television 441

24 Video Cassettes 443
24.1 Introduction 443
24.2 Magnetic tape 443
24.3 Magnetic tape with helical scanning 445
24.4 Recording on discs 447
24.5 The Teldec system 448
24.6 Capacitance discs 448
24.7 Discs using lasers 448
24.8 Photo CD 450
24.9 The duplication of programmes on video cassettes and discs 454

25 Pictures from Computers 455
25.1 Introduction 455
25.2 Coloured captions 455
25.3 Chroma-key 457
25.4 Teletext 457
25.5 Colour video display units 462
25.6 Video graphics 462
25.7 Computer assisted cartoons 468
25.8 Colour coding in pictures 469
25.9 Colour ranges 469
25.10 Colorization and restoration of films 472
PART FOUR COLOUR PRINTING

26 Photomechanical Principles 475
 26.1 Introduction 475
 26.2 Letterpress 475
 26.3 Lithography 481
 26.4 Gravure (Intaglio) 481
 26.5 Superimposed dye images 482
 26.6 Superimposed dot images 482
 26.7 Colorimetric colour reproduction with dot images 483
 26.8 Colour correction by masking 485
 26.9 Contact screens 485
 26.10 Autoscreen film 490
 26.11 Colour photocopying 490

27 Preparing the Copy and Checking the Results 492
 27.1 Introduction 492
 27.2 Duplicating and converting originals 493
 27.3 Duplicating transparencies 493
 27.4 Converting reflection prints to transparencies 494
 27.5 Producing second originals on paper 494
 27.6 Working from colour negatives 494
 27.7 Facsimile transmission 495
 27.8 A practical system of transparency duplication 495
 27.9 Comparing transparencies 498
 27.10 Comparing reflection prints and transparencies 499
 27.11 Prepress colour proofing 501

28 Practical Masking in Making Separations 504
 28.1 Introduction 504
 28.2 A two-mask system 504
 28.3 A four-mask system 506
 28.4 Masking procedures 506
 28.5 Special colour films for masking 507
 28.6 A direct screening system 508
 28.7 Two-stage masking 508
 28.8 Highlight masking in making separations 510
 28.9 Camera-back masking 510
 28.10 Choice of filters for making masks and separations 510
 28.11 Patches for controlling masking procedures 511
 28.12 Inks used in practice 512
 28.13 The subtractive colour triangle 514
 28.14 Standard inks 516
 28.15 Effects of printing procedures 517
 28.16 The use of extra coloured inks 517
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>29 Colour Scanners</td>
<td>519</td>
</tr>
<tr>
<td>29.1 Introduction</td>
<td>519</td>
</tr>
<tr>
<td>29.2 The Hardy and Wurzburg scanners</td>
<td>519</td>
</tr>
<tr>
<td>29.3 The P.D.I. scanner</td>
<td>521</td>
</tr>
<tr>
<td>29.4 Other drum scanners</td>
<td>523</td>
</tr>
<tr>
<td>29.5 Other flat-bed mechanical scanners</td>
<td>523</td>
</tr>
<tr>
<td>29.6 Optical feed-back scanners</td>
<td>526</td>
</tr>
<tr>
<td>29.7 Scanners with variable magnification</td>
<td>526</td>
</tr>
<tr>
<td>29.8 Scanner outputs</td>
<td>527</td>
</tr>
<tr>
<td>29.9 Electronic retouching</td>
<td>527</td>
</tr>
<tr>
<td>29.10 Electronic page make-up</td>
<td>529</td>
</tr>
<tr>
<td>29.11 Logic circuits in scanners</td>
<td>529</td>
</tr>
<tr>
<td>29.12 Unsharp masking in scanners</td>
<td>529</td>
</tr>
<tr>
<td>29.13 Differential masking in scanners</td>
<td>529</td>
</tr>
<tr>
<td>29.14 Grey component replacement (GCR)</td>
<td>532</td>
</tr>
<tr>
<td>29.15 Under colour correction</td>
<td>532</td>
</tr>
<tr>
<td>29.16 Typical scanner signal sequences</td>
<td>532</td>
</tr>
<tr>
<td>29.17 Monitor image display</td>
<td>533</td>
</tr>
<tr>
<td>29.18 Spectral sensitivities of scanners</td>
<td>533</td>
</tr>
<tr>
<td>29.19 Calibration targets</td>
<td>536</td>
</tr>
<tr>
<td>29.20 Scanners for desktop publishing</td>
<td>540</td>
</tr>
</tbody>
</table>

PART FIVE DIGITAL IMAGING

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 Bit Requirements</td>
<td>545</td>
</tr>
<tr>
<td>30.1 Introduction</td>
<td>545</td>
</tr>
<tr>
<td>30.2 Tonal digitisation</td>
<td>546</td>
</tr>
<tr>
<td>30.3 Spatial digitisation</td>
<td>546</td>
</tr>
<tr>
<td>30.4 Tonal and spatial digitisation</td>
<td>547</td>
</tr>
<tr>
<td>30.5 Allowing for overall image density</td>
<td>547</td>
</tr>
<tr>
<td>30.6 Using non-linear scales for tonal digitisation</td>
<td>547</td>
</tr>
<tr>
<td>30.7 Allowing for the limited reproduction gamut</td>
<td>548</td>
</tr>
<tr>
<td>30.8 Using luminance and chrominance signals to achieve bit reduction</td>
<td>551</td>
</tr>
<tr>
<td>30.9 Allowing for the modulation transfer function of the eye</td>
<td>552</td>
</tr>
<tr>
<td>30.10 High definition television (HDTV)</td>
<td>553</td>
</tr>
<tr>
<td>30.11 Digital cinema</td>
<td>553</td>
</tr>
<tr>
<td>30.12 Conclusions</td>
<td>554</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 Camcorders and Digital Still Cameras</td>
<td>555</td>
</tr>
<tr>
<td>31.1 Introduction</td>
<td>555</td>
</tr>
<tr>
<td>31.2 Filter arrays</td>
<td>555</td>
</tr>
<tr>
<td>31.3 Memory</td>
<td>556</td>
</tr>
<tr>
<td>31.4 Spectral sensitivities</td>
<td>556</td>
</tr>
<tr>
<td>31.5 Speed</td>
<td>557</td>
</tr>
<tr>
<td>31.6 Numbers of pixels</td>
<td>557</td>
</tr>
<tr>
<td>31.7 Electronic camera flow chart</td>
<td>558</td>
</tr>
<tr>
<td>31.8 Digital still camera signal processing</td>
<td>559</td>
</tr>
</tbody>
</table>
31.9 White balance in electronic cameras 561
31.10 A proposed standard default colour space, sRGB 562

32 Digital Scanners 564
32.1 Introduction 564
32.2 Scanning Methods 564
32.3 Light sources 565
32.4 Detectors 565
32.5 Obtaining the red, green, and blue signals 565
32.6 Colorimetry 565
32.7 Scanner targets 566
32.8 Spatial resolution 567
32.9 Tonal resolution 567

33 Digital Printing 569
33.1 Introduction 569
33.2 Number of tone levels required 569
33.3 Dot gain 570
33.4 Comparison of visual, continuous tone, half-tone, and micro-dot resolutions 572
33.5 Digital proofing 573
33.6 Desktop printing methods 573
33.7 Photographic imaging 574
33.8 Laser electrophotography 574
33.9 Thermal dye transfer 575
33.10 Thermal wax transfer 576
33.11 Ink jet 578
33.12 Hybrid continuous-tone and half-tone systems 579
33.13 Colour management systems 579
33.14 Device dependency 580
33.15 Viewing conditions 580
33.16 Gamut mapping 581
33.17 Device stability 582
33.18 Electronic image enhancement 583
33.19 Glossary of terms used in desktop printing 583

PART SIX EVALUATING COLOUR APPEARANCE 589

34 Chromatic Adaptation Transforms and a Colour Inconstancy Index 589
34.1 Introduction 589
34.2 Illuminant colorimetric shift 589
34.3 Adaptive colour shift 589
34.4 Chromatic adaptation transforms 590
34.5 The 1997 chromatic adaptation transform (CAT97) 591
34.6 The 1997 colour inconstancy index (CON97) 592
34.7 Reversing the 1997 chromatic adaptation transform (CAT97) 594
CONTENTS

35 CIECAM97s Model of Colour Appearance
35.1 Introduction
35.2 Visual areas in the observing field
35.3 Chromatic adaptation
35.4 Spectral sensitivities of the cones
35.5 Cone response functions
35.6 Luminance adaptation
35.7 Criteria for achromacy and for constant hue
35.8 Effects of luminance adaptation
35.9 Criteria for unique hues
35.10 Redness-greenness, a, and yellowness-blueness, b
35.11 Hue angle, h
35.12 Correlate of saturation, s
35.13 Correlates of hue, H and HC
35.14 Comparison with the Natural Colour System (NCS)
35.15 The achromatic response, A
35.16 Correlate of lightness, J
35.17 Correlate of brightness, Q
35.18 Correlates of chroma, C, and colourfulness, M
35.19 Testing model CIECAM97s
35.20 Filtration of projected slides
35.21 Effect of screen luminance on quality of projected pictures
35.22 Steps for using the CIECAM97s model
35.23 Steps for using the CIECAM97s model in reverse mode
35.24 Worked example for the model CIECAM97s
35.25 Using reversed colour models

36 Models of Colour Vision for Comprehensive Purposes and for Unrelated Colours
36.1 Introduction
36.2 Steps for using the 1997 comprehensive colour appearance model, CAM97c
36.3 Reversing the 1997 comprehensive colour appearance model, CAM97u
36.4 Unrelated colours, model CAM97u
36.5 Steps involved in using the model CAM97u for unrelated colours

37 Colour Reproduction Indices
37.1 Introduction
37.2 Steps in using a colour reproduction index
37.3 Using the colour reproduction index in practice

APPENDICES

Appendix 1 Matrix Algebra
A1.1 General principles
A1.2 Application to colorimetry
Appendix 2 Colorimetric Tables
A2.1 Calculating colorimetric measures
A2.2 Formulae and tables

Appendix 3 Photometric Units
A3.1 Relations between units of luminance
A3.2 Relations between units of luminance and illumination
A3.3 Some useful conversion factors
A3.4 Typical levels of luminance and illumination
A3.5 Typical levels of illumination from projectors

Appendix 4 Photographic Parameters
A4.1 Film speeds
A4.2 Film dimensions
A4.3 Motion picture parameters
A4.4 Lens apertures
A4.5 Flash guide numbers

Appendix 5 Advanced Colour Difference Formulae
A5.1 Introduction
A5.2 CIE 94 colour difference formula
A5.3 CMC (l:c) colour difference formula
A5.4 CIEDE2000 colour difference formula

Appendix 6 A Replacement for CIECAM97s
A6.1 Introduction
A6.2 Forward model
A6.3 Reverse model
A6.4 Worked example

Appendix 7 Spectral Luminous Efficiency Functions

Index