Stability of Stationary Sets in Control Systems with Discontinuous Nonlinearities

V. A. Yakubovich
G. A. Leonov
A. Kh. Gelig
St. Petersburg State University, Russia
Contents

Preface v

List of Notations ix

1. Foundations of Theory of Differential Equations with Discontinuous Right-Hand Sides 1
 1.1 Notion of Solution to Differential Equation with Discontinuous Right-Hand Side 2
 1.1.1 Difficulties encountered in the definition of a solution. Sliding modes 2
 1.1.2 The concept of a solution of a system with discontinuous nonlinearities accepted in this book. Connection with the theory of differential equations with multiple-valued right-hand sides 6
 1.1.3 Relation to some other definitions of a solution to a system with discontinuous right-hand side 14
 1.1.4 Sliding modes. Extended nonlinearity. Example 20
 1.2 Systems of Differential Equations with Multiple-Valued Right-Hand Sides (Differential Inclusions) 26
 1.2.1 Concept of a solution of a system of differential equations with a multivalued right-hand side, the local existence theorem, the theorems on continuation of solutions and continuous dependence on initial values 27
 1.2.2 “Extended” nonlinearities 37
 1.2.3 Sliding modes 44
1.3 Dichotomy and Stability 55
 1.3.1 Basic definitions 55
 1.3.2 Lyapunov-type lemmas 57

2. Auxiliary Algebraic Statements on Solutions of Matrix Inequalities of a Special Type 61
 2.1 Algebraic Problems that Occur when Finding Conditions for
 the Existence of Lyapunov Functions from Some
 Multiparameter Functional Class. Circle Criterion.
 Popov Criterion 62
 2.1.1 Equations of the system. Linear and nonlinear parts
 of the system. Transfer function and frequency
 response 63
 2.1.2 Existence of a Lyapunov function from the class of
 quadratic forms. S-procedure 64
 2.1.3 Existence of a Lyapunov function in the class of
 quadratic forms (continued). Frequency-domain
 theorem 69
 2.1.4 The circle criterion 71
 2.1.5 A system with a stationary nonlinearity. Existence of
 a Lyapunov function in the class "a quadratic form
 plus an integral of the nonlinearity" 75
 2.1.6 Popov criterion 79
 2.2 Relevant Algebraic Statements 84
 2.2.1 Controllability, observability, and stabilizability ... 84
 2.2.2 Frequency-domain theorem on solutions of some ma-
 trix inequalities 91
 2.2.3 Additional auxiliary lemmas 101
 2.2.4 The S-procedure theorem 106
 2.2.5 On the method of linear matrix inequalities in control
 theory 109

3. Dichotomy and Stability of Nonlinear Systems with Multiple Equilibria 111
 3.1 Systems with Piecewise Single-Valued Nonlinearities 112
3.1.1 Systems with several nonlinearities. Frequency-domain conditions for quasi-gradient-like behavior and pointwise global stability. Free gyroscope with dry friction .. 112

3.1.2 The case of a single nonlinearity and det $P \neq 0$. Theorem 3.4 on gradient-like behavior and pointwise global stability of the segment of rest. Examples .. 120

3.1.3 The case of a single nonlinearity and one zero pole of the transfer function. Theorem 3.6 on quasi-gradient-like behavior and pointwise global stability. The Bulgakov problem .. 124

3.1.4 The case of a single nonlinearity and double zero pole of the transfer function. Theorem 3.8 on global stability of the segment of rest. Gyroscopic roll equalizer. The problem of Lur'e and Postnikov. Control system for a turbine. Problem of an autopilot .. 130

3.2 Systems with Monotone Piecewise Single-Valued Nonlinearities .. 141

3.2.1 Systems with a single nonlinearity. Frequency-domain conditions for dichotomy and global stability. Corrected gyrostabilizer with dry friction. The problem of Vyshnegradskii .. 142

3.2.2 Systems with several nonlinearities. Frequency-domain criteria for dichotomy. Noncorrectable gyrostabilizer with dry friction .. 160

3.3 Systems with Gradient Nonlinearities .. 167

3.3.1 Dichotomy and quasi-gradient-like likeness of systems with gradient nonlinearities .. 167

3.3.2 Dichotomy and quasi-gradient-like behavior of nonlinear electrical circuits and of cellular neural networks .. 171

4. Stability of Equilibria Sets of Pendulum-Like Systems .. 175

4.1 Formulation of the Stability Problem for Equilibrium Sets of Pendulum-Like Systems .. 175

4.1.1 Special features of the dynamics of pendulum-like systems. The structure of their equilibria sets .. 175

4.1.2 Canonical forms of pendulum-like systems with a single scalar nonlinearity .. 183
4.1.3 Dichotomy. Gradient-like behavior in a class of nonlinearities with zero mean value 189
4.2 The Method of Periodic Lyapunov Functions 192
 4.2.1 Theorem on gradient-like behavior 192
 4.2.2 Phase-locked loops with first- and second-order low-pass filters 201
4.3 An Analogue of the Circle Criterion for Pendulum-Like Systems 203
 4.3.1 Criterion for boundedness of solutions of pendulum-like systems 204
 4.3.2 Lemma on pointwise dichotomy 210
 4.3.3 Stability of two- and three-dimensional pendulum-like systems. Examples 212
 4.3.4 Phase-locked loops with a band amplifier 216
4.4 The Method of Non-Local Reduction 218
 4.4.1 The properties of separatrices of a two-dimensional dynamical system 219
 4.4.2 The theorem on nonlocal reduction 222
 4.4.3 Theorem on boundedness of solutions and on gradient-like behavior 223
 4.4.4 Generalized Böhm–Hayes theorem 228
 4.4.5 Approximation of the acquisition bands of phase-locked loops with various low-pass filters 229
4.5 Necessary Conditions for Gradient-Like Behavior of Pendulum-Like Systems 235
 4.5.1 Conditions for the existence of circular solutions and cycles of the second kind 236
 4.5.2 Generalized Hayes theorem 244
 4.5.3 Estimation of the instability regions in searching PLL systems and PLL systems with 1/2 filter 245
4.6 Stability of the Dynamical Systems Describing the Synchronous Machines 251
 4.6.1 Formulation of the problem 252
 4.6.2 The case of zero load 253
 4.6.3 The case of a nonzero load 258

5. Appendix. Proofs of the Theorems of Chapter 2 269
 5.1 Proofs of Theorems on Controllability, Observability, Irreducibility, and of Lemmas 2.4 and 2.7 269
Contents

5.1.1 Proof of the equivalence of controllability to properties (i)-(iv) of Theorem 2.6 269
5.1.2 Proof of the Theorem 2.7 273
5.1.3 Completion of the proof of Theorem 2.6 274
5.1.4 Proof of Theorem 2.8 275
5.1.5 Proof of Theorem 2.9 in the scalar case $m = l = 1$ 275
5.1.6 Proof of Theorem 2.9 for the case when either $m > 1$
 or $l > 1$ and proof of Theorem 2.10 277
5.1.7 Proof of Lemma 2.4 279
5.1.8 Proof of Lemma 2.7 281
5.2 Proof of Theorem 2.13 (Nonsingular Case). Theorem on
Solutions of Lur'ë Equation (Algebraic Riccati Equation) 283
5.2.1 Two lemmas. A detailed version of frequency-domain
theorem for the nonsingular case 283
5.2.2 Proof of Theorem 5.1. The theorem on solvability of
the Lur'ë equation 289
5.2.3 Lemma on J-orthogonality of the root subspaces of a
Hamiltonian matrix 295
5.3 Proof of Theorem 2.13 (Completion) and Lemma 5.1 297
5.3.1 Proof of Lemma 5.1 297
5.3.2 Proof of Theorem 2.13 298
5.4 Proofs of Theorems 2.12 and 2.14 (Singular Case) 301
5.4.1 Proof of Theorem 2.12 301
5.4.2 Necessity of the hypotheses of Theorem 2.14 306
5.4.3 Sufficiency of the hypotheses of Theorem 2.14 309
5.5 Proofs of Theorems 2.17-2.19 on Losslessness of S-procedure 316
5.5.1 The Dines theorem 316
5.5.2 Proofs of the theorems on the losslessness of the S-
procedure for quadratic forms and one constraint 318