Crystal Growth Technology

HANS J. SCHEEL
SCHEEL CONSULTING, Groenstrasse, CH-3803 Beatenberg BE, Switzerland
hans.scheel@bluewin.ch

TSUGUO FUKUDA
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
t-fukuda@tagen.tohoku.ac.jp
CONTENTS

<table>
<thead>
<tr>
<th>Contributors</th>
<th>xix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xxv</td>
</tr>
</tbody>
</table>

PART 1: GENERAL ASPECTS OF CRYSTAL GROWTH TECHNOLOGY

1. **The Development of Crystal Growth Technology**
 - **H. J. Scheel**
 - Abstract 3
 - 1.1 Historical Introduction 4
 - 1.2 The Development of Crystal-growth Methods 5
 - 1.3 Crystal-growth Technology Now 10
 - 1.4 Conclusion 13
 - References 13

2. **Thermodynamic Fundamentals of Phase Transitions Applied to Crystal Growth Processes**
 - **P. Rudolph**
 - 2.1 Introduction 15
 - 2.2 Perfect and Real Structure of Grown Crystals 16
 - 2.2.1 The Principle of Gibbs Free Energy Minimization 16
 - 2.2.2 Equilibrium Point-defect Concentration 17
 - 2.3 Thermodynamics of Phase Equilibrium 19
 - 2.3.1 The Phase Transition 19
 - 2.3.2 Two-component Systems with Ideal and Real Mixing 21
 - 2.3.3 Phase Boundaries and Surfaces 23
 - 2.4 Thermodynamics of Topical Crystal Growth Problems 25
 - 2.4.1 Mixed Crystals with Nearly Ideal Solid Solution 25
 - 2.4.2 Systems with Compound Formation 28
 - 2.4.3 Compositional Modulation and Ordering in Mixed Semiconductor Thin Films 34
 - 2.5 Deviation from Equilibrium 36
 - 2.5.1 Driving Force of Crystallization 36
 - 2.5.2 Growth Mode with Two-dimensional Nucleation 39
 - References 40
3 Interface-kinetics-driven Facet Formation During Melt Growth of Oxide Crystals

S. Brandon, A. Virozub and Y. Liu

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>43</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>44</td>
</tr>
<tr>
<td>3.2 Model Development</td>
<td>46</td>
</tr>
<tr>
<td>3.2.1 Mathematical Formulation</td>
<td>46</td>
</tr>
<tr>
<td>3.2.2 Numerical Technique</td>
<td>51</td>
</tr>
<tr>
<td>3.3 Results and Discussion</td>
<td>52</td>
</tr>
<tr>
<td>3.3.1 Effect of Operating Parameters on Facetting</td>
<td>52</td>
</tr>
<tr>
<td>3.3.2 Interaction between Melt Flow and Facet Formation</td>
<td>55</td>
</tr>
<tr>
<td>3.3.3 Transparent Crystalline Phase</td>
<td>60</td>
</tr>
<tr>
<td>3.3.4 Positioning of Facets along the Interface</td>
<td>61</td>
</tr>
<tr>
<td>3.4 Conclusions</td>
<td>62</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>64</td>
</tr>
<tr>
<td>Note Added in Proof</td>
<td>65</td>
</tr>
<tr>
<td>References</td>
<td>65</td>
</tr>
</tbody>
</table>

4 Theoretical and Experimental Solutions of the Striation Problem

H. J. Scheel

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>69</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>69</td>
</tr>
<tr>
<td>4.2 Origin and Definitions of Striations</td>
<td>70</td>
</tr>
<tr>
<td>4.3 Homogeneous Crystals with $k_{\text{eff}} \rightarrow 1$</td>
<td>74</td>
</tr>
<tr>
<td>4.4 Segregation Phenomena and Thermal Striations</td>
<td>76</td>
</tr>
<tr>
<td>4.5 Growth of Striation-Free KTN Crystals</td>
<td>82</td>
</tr>
<tr>
<td>4.6 Alternative Approaches to Reduce Striations</td>
<td>84</td>
</tr>
<tr>
<td>4.7 Discussion</td>
<td>89</td>
</tr>
<tr>
<td>References</td>
<td>89</td>
</tr>
</tbody>
</table>

5 High-resolution X-Ray Diffraction Techniques for Structural Characterization of Silicon and other Advanced Materials

K. Lal

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Introduction</td>
<td>93</td>
</tr>
<tr>
<td>5.2 High-resolution X-Ray Diffraction Techniques</td>
<td>94</td>
</tr>
<tr>
<td>5.2.1 Theoretical Background</td>
<td>94</td>
</tr>
<tr>
<td>5.2.2 High-resolution X-Ray Diffraction Experiments: A Five-crystal X-Ray Diffractometer</td>
<td>96</td>
</tr>
<tr>
<td>5.3 Evaluation of Crystalline Perfection and Characterization of Crystal Defects</td>
<td>100</td>
</tr>
<tr>
<td>5.4 Accurate Determination of Crystallographic Orientation</td>
<td>104</td>
</tr>
<tr>
<td>5.5 Measurement of Curvature or Bending of Single-crystal Wafers</td>
<td>108</td>
</tr>
<tr>
<td>5.6 Characterization of Process-induced Defects in Semiconductors: Implantation-induced Damage</td>
<td>110</td>
</tr>
</tbody>
</table>
5.7 Conclusions
 5.7.1 Acknowledgement
References

6 Computational Simulations of the Growth of Crystals from Liquids
 A. Yeckel and J. J. Derby
 6.1 Introduction
 6.2 Transport Modeling in Bulk Crystal Growth
 6.2.1 Governing Equations
 6.2.2 Boundary Conditions
 6.3 Computational Issues
 6.3.1 Numerical Methods
 6.3.2 Software: Commercial versus Research, General versus Specialty
 6.4 Examples of One-, Two-, and Three-dimensional Models
 6.4.1 Can we still Learn from a 1D Model?
 6.4.2 Is 2D Modeling Routine and Accurate?
 6.4.3 When are 3D Models Necessary?
 6.5 Summary and Outlook
 Acknowledgments
References

7 Heat and Mass Transfer under Magnetic Fields
 K. Kakimoto
 Abstract
 7.1 Introduction
 7.2 Magnetic Fields Applied to Czochralski Growth
 7.3 Numerical Modeling
 7.4 Vertical Magnetic Field (VMF)
 7.5 Cusp-shaped Magnetic Fields (CMF)
 7.6 Transverse Magnetic Fields (TMF)
 7.7 Summary
 Acknowledgment
References

8 Modeling of Technologically Important Hydrodynamics and Heat/Mass Transfer Processes during Crystal Growth
 V. I. Polezhaev
 8.1 Introduction
 8.2 Technologically Important Hydrodynamics Processes during Crystal Growth
 8.3 Benchmark Problem
 8.4 Hierarchy of the Models and Codes and Summary of Benchmark Exercises
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.5</td>
<td>Gravity-driven Convection Instability and Oscillations in BenchMark Configuration</td>
<td>172</td>
</tr>
<tr>
<td>8.6</td>
<td>Convective Interaction and Instabilities in Configuration of Industrial GaAs Czochralski Growth</td>
<td>173</td>
</tr>
<tr>
<td></td>
<td>8.6.1 Axisymmetrical Approach: Nonlinear Coupling Fluid Flow and Control Possibilities</td>
<td>174</td>
</tr>
<tr>
<td></td>
<td>8.6.2 Three-Dimensional Analysis</td>
<td>176</td>
</tr>
<tr>
<td>8.7</td>
<td>Conclusions</td>
<td>181</td>
</tr>
<tr>
<td></td>
<td>Acknowledgments</td>
<td>182</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>182</td>
</tr>
</tbody>
</table>

PART 2: SILICON

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Influence of Boron Addition on Oxygen Behavior in Silicon Melts</td>
<td>189</td>
</tr>
<tr>
<td></td>
<td>K. Terashima</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td>189</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>189</td>
</tr>
<tr>
<td>9.2</td>
<td>Oxygen Behavior in Boron-doped Silicon Melts</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td>9.2.1 Oxygen Solubility in Silicon Melt</td>
<td>191</td>
</tr>
<tr>
<td></td>
<td>9.2.2 Fused Quartz Dissolution Rate in Silicon Melts</td>
<td>196</td>
</tr>
<tr>
<td></td>
<td>9.2.3 Evaporation from Free Surface of Boron-doped Silicon Melts in Fused-quartz Crucible</td>
<td>200</td>
</tr>
<tr>
<td>9.3</td>
<td>Conclusion</td>
<td>203</td>
</tr>
<tr>
<td></td>
<td>Acknowledgments</td>
<td>203</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>204</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Octahedral Void Defects in Czochralski Silicon</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>M. Itsumi</td>
<td></td>
</tr>
<tr>
<td>10.1</td>
<td>Background</td>
<td>205</td>
</tr>
<tr>
<td>10.2</td>
<td>Observation Methods</td>
<td>206</td>
</tr>
<tr>
<td>10.3</td>
<td>Characterization</td>
<td>209</td>
</tr>
<tr>
<td>10.4</td>
<td>Generation Mechanism</td>
<td>213</td>
</tr>
<tr>
<td>10.5</td>
<td>Elimination</td>
<td>215</td>
</tr>
<tr>
<td>10.6</td>
<td>Oxide Defect Generation</td>
<td>216</td>
</tr>
<tr>
<td>10.7</td>
<td>Concluding Remarks</td>
<td>219</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>222</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>The Control and Engineering of Intrinsic Point Defects in Silicon Wafers and Crystals</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>R. Falster, V. V. Voronkov and P. Mutti</td>
<td></td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>11.1.1 Vacancy-type Defects</td>
<td>226</td>
</tr>
</tbody>
</table>
11.1.2 Silicon Self-interstitial-type Defects 226
11.1.3 The Precipitation of Oxygen 226
11.2 The Control of the Agglomeration of Intrinsic Point Defects during Crystal Growth 227
11.2.1 The v/G Rule for the Type of Grown-in Microdefects 227
11.2.2 Alternative Views to the v/G Rule 228
11.2.3 Void Reaction Control 229
11.2.4 Perfect Silicon 230
11.3 The Control of Oxygen Precipitation through the Engineering of Vacancy Concentration in Silicon Wafers: Magic Denuded Zone™ Wafers 231
11.3.1 'Tabula Rasa' Silicon and the Suppression of Oxygen Precipitation in Low-Vacancy-Concentration Material 231
11.3.2 Material 'Switching' and Transfer Functions 233
11.3.3 Comparison of Conventional and Vacancy-Engineered Control of Oxygen Precipitation 233
11.3.4 The Installation of Vacancy Concentration Profiles in Thin Silicon Wafers 235
11.3.5 Advantages of the Use of Vacancies to Control Oxygen Precipitation in Wafers 236
11.3.6 The Mechanism of the Vacancy Effect on Oxygen Precipitation 236
11.4 Conclusions Drawn Regarding the Intrinsic Point-Defect Parameters taken from the Combination of Crystal Growth and MDZ Experiments 238
11.4.1 Recombination Rate 238
11.4.2 Self-interstitial Diffusivity 239
11.4.3 Vacancy Diffusivity 239
11.4.4 The Difference of Equilibrium Vacancy and Interstitial Concentrations 239
11.4.5 Formation Energies 240
11.4.6 Critical v/G Ratio 241
11.4.7 Vacancy Binding by Oxygen 241
11.5 Unified Schematic Pictures of Vacancy Control for Crystal Growth and Wafer Processing 242
Acknowledgments 248
References 248

12 The Formation of Defects and Growth Interface Shapes in CZ Silicon 251
T. Abe
Abstract 251
12.1 Introduction 251
12.2 Experiments 254
12.3 Results 256
12.4 Discussion 258
 12.4.1 Balance Equation 258
 12.4.2 Discussion of Voronkov’s Relation 262
 12.4.3 Interface-shape Formation 263
12.5 Conclusions 264
References 264

13 Silicon Crystal Growth for Photovoltaics 267
 T. F. Ciszek
 13.1 Introduction 267
 13.2 Basic Concepts 268
 13.2.1 The Photovoltaic Effect 268
 13.2.2 Minority-carrier Lifetime, τ 269
 13.2.3 Light Absorption 271
 13.3 Silicon Source Materials 272
 13.4 Ingot Growth Methods and Wafering 275
 13.4.1 Single-crystal Growth 276
 13.4.2 Multicrystalline Growth 277
 13.5 Ribbon/Sheet Growth Methods 279
 13.6 Thin-Layer Growth on Substrates 283
 13.7 Comparison of Growth Methods 285
 13.8 Future Trends 285
References 287

PART 3: COMPOUND SEMICONDUCTORS 291

14 Fundamental and Technological Aspects of Czochralski Growth of High-quality Semi-insulating GaAs Crystals 293
 P. Rudolph and M. Jurisch
 14.1 Introduction 293
 14.1.1 Historical Background 293
 14.1.2 The Importance of SI GaAs and its Performance 295
 14.2 Features and Fundamental Aspects of LEC Growth of SI GaAs Crystals 297
 14.2.1 The Principle of Modern LEC Technique 297
 14.2.2 Correlation between Heat Transfer, Thermomechanical Stress and Dislocation Density 300
 14.2.3 Dislocation Patterns 303
 14.2.4 Principles of Native-defect Control 305
 14.2.5 Carbon Control 310
 14.3 Modified Czochralski Technologies 313
 14.3.1 Vapour-pressure-controlled Czochralski (VCz) Method 313
14.3.2 Fully-Encapsulated Czochralski (FEC) Growth 315
14.3.3 Hotwall Czochralski (HWC) Technique 316
14.4 Conclusions and Outlook 317
Acknowledgement 318
References 318

15 Growth of III-V and II-VI Single Crystals by the Vertical-gradient-freeze Method 323
T. Asahi, K. Kainosho, K. Kohiro, A. Noda, K. Sato and O. Oda
15.1 Introduction 323
15.2 InP Crystal Growth by the VGF Method 324
15.3 GaAs Crystal Growth by the VGF Method 331
15.3.1 Growth of Undoped GaAs 331
15.3.2 Growth of Si-doped GaAs Crystals 335
15.3.3 Growth of Zn-doped Crystals 336
15.4 CdTe Crystal Growth by the VGF Method without Seed Crystals 337
15.5 ZnTe Crystal Growth by VGF without Seed Crystals using the High-pressure Furnace 344
15.6 Summary 346
References 346

16 Growth Technology of III-V Single Crystals for Production 349
T. Kawase, M. Tatsumi and Y. Nishida
16.1 Introduction 349
16.2 Properties of III-V Materials 349
16.3 Growth Technology of III-V Materials 350
16.3.1 HB and HGF Techniques 351
16.3.2 LEC Technique 352
16.3.3 Vapor-pressure-controlled Czochralski (VCZ) Technique 353
16.3.4 VB and VGF Techniques 355
16.4 Applications and Requirements for GaAs Single Crystals 356
16.5 Growth of Large Single Crystals 357
16.6 Growth of Low-Dislocation-Density GaAs Crystal 359
16.7 Control of Quality and Yield of GaAs Crystals 361
16.7.1 Twinning 362
16.7.2 Lineage 364
16.8 Control of the Electronic Quality of GaAs 365
16.8.1 Absolute Value of Resistivity 365
16.8.2 Uniformity of Microscopic Resistivity 366
16.9 Trend of Growth Methods for GaAs 367
16.10 InP 367
17 CdTe and CdZnTe Growth

R. Triboulet

17.1 Introduction
17.2 Phase Equilibria in the Cd–Te System
17.3 Crystal Growth versus Cd–Te Chemical Bond Characteristics
17.4 Crystal Growth
17.5 Bridgman Growth Modeling and Interface-shape Determination
17.6 CdZnTe Properties
17.6.1 Properties at Macroscopic and Microscopic Scale
17.6.2 Segregation
17.6.3 Industrial Growth
17.7 Properties and Defects of the Crystals
17.8 Purity, Contamination, Doping
17.9 Conclusions and Perspectives

PART 4: OXIDES AND HALIDES

18 Phase-diagram Study for Growing Electro-optic Single Crystals

S. Miyazawa

Abstract

18.1 Introduction
18.2 Phase-relation Study of LiTaO₃
18.2.1 Preliminary Studies by X-Ray Diffractometry
18.2.2 Determination of the Congruently Melting Composition
18.2.3 Optical Quality of the Congruent LiTaO₃
18.2.4 Conclusion
18.3 Phase-relation Study of Bi₁₂TiO₂₀
18.3.1 Re-examination of Phase Diagram
18.3.2 Lattice-constant Variations of the Bi₁₂TiO₂₀ Phase
18.3.3 New Phase Diagram
18.3.4 Growth of Long Single Crystals
18.3.5 Conclusion

18.4 Summary
Acknowledgment
References
19 Melt Growth of Oxide Crystals for SAW, Piezoelectric, and Nonlinear-Optical Applications 429
K. Shimamura, T. Fukuda and V. I. Chani
19.1 Introduction 429
19.2 LiTaO₃ for SAW Devices 431
19.3 Langasite-family Crystals for Piezoelectric Applications 434
19.4 Nonlinear-Optical Crystals for Blue SHG 439
19.5 Summary 441
References 443

20 Growth of Nonlinear-optical Crystals for Laser-frequency Conversion 445
T. Sasaki, Y. Mori and M. Yoshimura
20.1 Introduction 445
20.2 Crystals Grown from Low-temperature Solutions 445
20.2.1 Growth of Large KDP (Potassium Dihydrogen Phosphate) Crystals of Improved Laser-damage Threshold 445
20.2.2 Growth and Characterization of Organic NLO Crystals 448
20.3 Crystals Grown from High-temperature Solutions 451
20.3.1 Growth and Optical Characterization of KTP (Potassium Titanyl Phosphate) Crystal [12–14] 451
20.3.2 Growth and NLO Properties of Cesium Lithium Borate CLBO 454
20.4 Conclusions 458
References 458

21 Growth of Zirconia Crystals by Skull-Melting Technique 461
E. E. Lomonova and V. V. Osiko
21.1 Introduction 461
21.2 Physical and Technical Aspects of the Direct Radio-frequency Melting in a Cold Container (Skull Melting) 462
21.3 RF-furnaces for Zirconia Melting and Crystallization 467
21.4 Phase Relations in Zirconia Solid Solutions. Y-stabilized (Y CZ) and Partially Stabilized (PSZ) Zirconia 470
21.5 Growth Processes of YCZ and PSZ Crystals 472
21.6 Structure, Defects, and Properties of YCZ and PSZ Crystals 475
21.7 Applications of YCZ and PSZ Crystals 479
21.8 Conclusion 482
Acknowledgments 484
References 484
22 Shaped Sapphire Production
L. A. Lytvynov

22.1 Introduction 487
22.2 Crystal-growth Installation 487
22.3 Growing of Crucibles 488
22.4 Growth of Complicated Shapes 492
22.5 Dice 494
22.6 Group Growth 496
22.7 Local Forming 498
22.8 Sapphire Products for Medicine 499
22.9 Improvement of Structure Quality of Profile Sapphire 502

References 509

23 Halogenide Scintillators: Crystal Growth and Performance
A. V. Gektin and B. G. Zaslavsky

23.1 Introduction 511
23.2 Modern Tendency in A^I B^VII Crystal Growth 511
 23.2.1 R&D for Halogenide Crystal Perfection 511
 23.2.2 Traditional Crystal Growth Methods 513
 23.2.3 Automated Growth Principles and Technique 514
23.3 Modified Method of Automated Pulling of Large-size Scintillation Crystals 517
 23.3.1 Principles of the Method 517
 23.3.2 The Method Model and the Process Control Parameter 518
23.4 Experimental and Practical Method Realization 521
23.5 Scintillator Quality 524
 23.5.1 Activated Scintillators 524
 23.5.2 Undoped Scintillators 525
23.6 Conclusion 527
References 527

PART 5: CRYSTAL MACHINING

24 Advanced Slicing Techniques for Single Crystals
C. Hauser and P. M. Nasch

Abstract 531

24.1 Introduction 531
24.2 Geometrical Parameters 532
24.3 Survey on Slicing Methods for Silicon Single Crystal 533
24.4 Material-removal Process 537
24.5 General Comparison of Different Slicing Methods 541
24.6 Surface Damage 542
24.7 Economics 544
25 Methods and Tools for Mechanical Processing of Anisotropic Scintillating Crystals

M. Lebeau

25.1 Introduction
25.2 Crystals
25.3 Machine-tools and Diamond Cutting Disks
25.4 Tooling for Cutting Operations
 25.4.1 Traveling (Setting) Reference Base
 25.4.2 Processing Reference Base
 25.4.3 Positioning Tools
 25.4.4 Inspection Tools
25.5 Tools for Lapping and Polishing Operations
25.6 Optical Method for Inspection of Crystal Residual Stresses
25.7 Conclusions and Production Forecasts

References

26 Plasma-CVM (Chemical Vaporization Machining)

Y. Mori, K. Yamamura, and Y. Sano

26.1 Introduction
26.2 Concepts of Plasma-CVM
26.3 Applications of Plasma-CVM
26.4 Slicing
 26.4.1 Slicing Machine
 26.4.2 Slicing Rate
 26.4.3 Kerf Loss
 26.4.4 Slicing of Silicon Ingot
26.5 Planarization
 26.5.1 Planarization Machine
 26.5.2 Machining Properties
26.6 Figuring
 26.6.1 Numerically Controlled Plasma-CVM System
 26.6.2 Machining Properties
 26.6.3 Fabrication of the Flat Mirror
 Acknowledgements

References

27 Numerically Controlled EEM (Elastic Emission Machining) System for Ultraprecision Figuring and Smoothing of Aspherical Surfaces

Y. Mori, K. Yamauchi, K. Hirose, K. Sugiyama, K. Inagaki and H. Mimura
27.1 Introduction 607
27.2 Features and Performances 607
27.3 Atom-removal Mechanism 610
 27.3.1 General View 610
 27.3.2 Process Simulation and Results 611
27.4 Numerically Controlled EEM System 614
 27.4.1 Requirement of Ultraclean Environmental Control 614
 27.4.2 Numerically Controlled Stage System 614
 27.4.3 EEM Heads 615
 27.4.4 In-process Refining System of the Mixture Fluid 617
27.5 Numerical Control System 617
 27.5.1 Concepts for Ultraprecise Figuring 617
 27.5.2 Software for Calculating Scanning Speed 617
 27.5.3 Performances of Numerically Controlled Processing 618
27.6 Conclusion 619
Acknowledgement 620
References 620

PART 6: EPITAXY AND LAYER DEPOSITION 621

28 Control of Epitaxial Growth Modes for High-performance Devices 623
H. J. Scheel
 Abstract 623
28.1 Introduction 623
28.2 Seven Epitaxial Growth Modes and the Role of Growth Parameters 624
28.3 Control of Growth Modes 635
28.4 Conclusions 641
 General References 642
 References 642

29 High-rate Deposition of Amorphous Silicon Films by Atmospheric-pressure Plasma Chemical Vapor Deposition 645
Y. Mori, H. Kakiuchi, K. Yoshii and K. Yasutake
 Abstract 645
29.1 Introduction 645
29.2 Atmospheric-Pressure Plasma CVD 646
 29.2.1 Atmospheric Pressure, VHF Plasma 646
 29.2.2 Utilization of Rotary Electrode 646
29.3 Experimental 647
29.4 Results and Discussion 648
 29.4.1 Deposition Rate 648
 29.4.2 Electrical and Optical Properties 648