Generalized Boltzmann Physical Kinetics

BORIS V. ALEXEEV

Moscow Fine Chemical Technology Institute
Moscow 119571, Russia

2004

ELSEVIER

Chapter 4. **Physics of a Weakly Ionized Gas** 161

4.1. Relaxation of charged particles in "Maxwellian" gas and the hydrodynamic aspects of the theory 161
4.2. Distribution function of the charged particles in the "Lorentz" gas 168
4.3. Charged particles in alternating electric field 176
4.4. Conductivity of a weakly ionized gas in crossed electric and magnetic fields 179

Chapter 5. **Kinetic Coefficients in the Theory of the Generalized Kinetic Equations** 187

5.1. Linearization of the generalized Boltzmann equation 187
5.2. Approximate modified Chapman–Enskog method 195
5.3. Kinetic coefficient calculation with taking into account the statistical fluctuations 208

Chapter 6. **Some Applications of the Generalized Boltzmann Physical Kinetics** 215

6.1. Investigation of the generalized Boltzmann equation for electron energy distribution in a constant electric field with due regard for inelastic collisions 215
6.2. Sound propagation studied with the generalized equations of fluid dynamics 226
6.3. Shock wave structure examined with the generalized equations of fluid dynamics 238

Chapter 7. **Numerical Simulation of Vortex Gas Flow Using the Generalized Euler Equations** 241

7.1. Unsteady flow of a compressible gas in a cavity 241
7.2. Application of the generalized hydrodynamic equations: to the investigation of gas flows in channels with a step 254
7.3. Vortex and turbulent flow of viscous gas in channel with flat plate 266

Chapter 8. **Generalized Boltzmann Physical Kinetics in Physics of Plasma and Liquids** 287

8.1. Extension of generalized Boltzmann physical kinetics for the transport processes description in plasma 287
8.2. Dispersion equations of plasma in generalized Boltzmann theory 297
8.3. Generalized dispersion relations for plasma: theory and experiment 313
8.4. To the kinetic and hydrodynamic theory of liquids 323

Appendices

A1. Derivation of energy equation for invariant $E_\alpha = m_\alpha V_\alpha^2/2 + e_\alpha$ 339
A2. Three-diagonal method of Gauss elimination technics for the differential third-order equation 347
A3. Some integral calculations in the generalized Navier–Stokes approximation 352
A4. Three-diagonal method of Gauss elimination technique for the differential second-order equation 354
A5. Characteristic scales in plasma physics 356
A6. Dispersion relations in the generalized Boltzmann kinetic theory neglecting the integral collision term 357

References 361

Subject Index 367