Contents

Preface xiii

Acknowledgments xv

1. Introduction 1

1.1 Nanophotonics—An Exciting Frontier in Nanotechnology 1
1.2 Nanophotonics at a Glance 1
1.3 Multidisciplinary Education, Training, and Research 3
1.4 Rationale for this Book 4
1.5 Opportunities for Basic Research and Development of New Technologies 5
1.6 Scope of this Book 6
References 8

2. Foundations for Nanophotonics 9

2.1 Photons and Electrons: Similarities and Differences 10
2.1.1 Free-Space Propagation 12
2.1.2 Confinement of Photons and Electrons 14
2.1.3 Propagation Through a Classically Forbidden Zone: Tunneling 19
2.1.4 Localization Under a Periodic Potential: Bandgap 21
2.1.5 Cooperative Effects for Photons and Electrons 24
2.2 Nanoscale Optical Interactions 28
2.2.1 Axial Nanoscopic Localization 29
2.2.2 Lateral Nanoscopic Localization 32
2.3 Nanoscale Confinement of Electronic Interactions 33
2.3.1 Quantum Confinement Effects 34
2.3.2 Nanoscopic Interaction Dynamics 34
2.3.3 New Cooperative Transitions 34
2.3.4 Nanoscale Electronic Energy Transfer 35
2.3.5 Cooperative Emission 36
2.4 Highlights of the Chapter 37
References 38
CONTENTS

3. Near-Field Interaction and Microscopy

3.1 Near-Field Optics
3.2 Theoretical Modeling of Near-Field Nanoscopic Interactions
3.3 Near-Field Microscopy
3.4 Examples of Near-Field Studies
 3.4.1 Study of Quantum Dots
 3.4.2 Single-Molecule Spectroscopy
 3.4.3 Study of Nonlinear Optical Processes
3.5 Apertureless Near-Field Spectroscopy and Microscopy
3.6 Nanoscale Enhancement of Optical Interactions
3.7 Time- and Space-Resolved Studies of Nanoscale Dynamics
3.8 Commercially Available Sources for Near-Field Microscope
3.9 Highlights of the Chapter

4. Quantum-Confined Materials

4.1 Inorganic Semiconductors
 4.1.1 Quantum Wells
 4.1.2 Quantum Wires
 4.1.3 Quantum Dots
 4.1.4 Quantum Rings
4.2 Manifestations of Quantum Confinement
 4.2.1 Optical Properties
 4.2.2 Examples
 4.2.3 Nonlinear Optical Properties
 4.2.4 Quantum-Confined Stark Effect
4.3 Dielectric Confinement Effect
4.4 Superlattices
4.5 Core-Shell Quantum Dots and Quantum Dot-Quantum Wells
4.6 Quantum-Confined Structures as Lasing Media
4.7 Organic Quantum-Confined Structures
4.8 Highlights of the Chapter

5. Plasmonics

5.1 Metallic Nanoparticles and Nanorods
5.2 Metallic Nanoshells
5.3 Local Field Enhancement
5.4 Subwavelength Aperture Plasmonics
5.5 Plasmonic Wave Guiding
5.6 Applications of Metallic Nanostructures
5.7 Radiative Decay Engineering
5.8 Highlights of the Chapter

References
6. Nanocontrol of Excitation Dynamics 153

- 6.1 Nanostructure and Excited States 154
- 6.2 Rare-Earth Doped Nanostructures 158
- 6.3 Up-Converting Nanophores 161
- 6.4 Photon Avalanche 165
- 6.5 Quantum Cutting 166
- 6.6 Site Isolating Nanoparticles 171
- 6.7 Highlights of the Chapter 171

References 173

7. Growth and Characterization of Nanomaterials 177

- 7.1 Growth Methods for Nanomaterials 178
 - 7.1.1 Epitaxial Growth 179
 - 7.1.2 Laser-Assisted Vapor Deposition (LAVD) 183
 - 7.1.3 Nanochemistry 185
- 7.2 Characterization of Nanomaterials 189
 - 7.2.1 X-Ray Characterization 190
 - 7.2.1.1 X-Ray Diffraction 190
 - 7.2.1.2 X-Ray Photoelectron Spectroscopy 192
 - 7.2.2 Electron Microscopy 194
 - 7.2.2.1 Transmission Electron Microscopy (TEM) 195
 - 7.2.2.2 Scanning Electron Microscopy (SEM) 195
 - 7.2.3 Other Electron Beam Techniques 197
 - 7.2.4 Scanning Probe Microscopy (SPM) 199
- 7.3 Highlights of the Chapter 204

References 206

8. Nanostructured Molecular Architectures 209

- 8.1 Noncovalent Interactions 210
- 8.2 Nanostructured Polymeric Media 212
- 8.3 Molecular Machines 215
- 8.4 Dendrimers 217
- 8.5 Supramolecular Structures 225
- 8.6 Monolayer and Multilayer Molecular Assemblies 229
- 8.7 Highlights of the Chapter 233

References 235

9. Photonic Crystals 239

- 9.1 Basics Concepts 240
- 9.2 Theoretical Modeling of Photonic Crystals 242
- 9.3 Features of Photonic Crystals 246
- 9.4 Methods of Fabrication 252
- 9.5 Photonic Crystal Optical Circuitry 259
9.6 Nonlinear Photonic Crystals 260
9.7 Photonic Crystal Fibers (PCF) 264
9.8 Photonic Crystals and Optical Communications 266
9.9 Photonic Crystal Sensors 267
9.10 Highlights of the Chapter 270
References 272

10. Nanocomposites 277
10.1 Nanocomposites as Photonic Media 278
10.2 Nanocomposite Waveguides 280
10.3 Random Lasers: Laser Paints 283
10.4 Local Field Enhancement 284
10.5 Multiphasic Nanocomposites 286
10.6 Nanocomposites for Optoelectronics 290
10.7 Polymer-Dispersed Liquid Crystals (PDLC) 297
10.8 Nanocomposite Metamaterials 301
10.9 Highlights of the Chapter 302
References 304

11. Nanolithography 309
11.1 Two-Photon Lithography 311
11.2 Near-Field Lithography 317
11.3 Near-Field Phase-Mask Soft Lithography 322
11.4 Plasmon Printing 324
11.5 Nanosphere Lithography 325
11.6 Dip-Pen Nanolithography 328
11.7 Nanoimprint Lithography 330
11.8 Photonically Aligned Nanoarrays 331
11.9 Highlights of the Chapter 332
References 334

12. Biomaterials and Nanophotonics 337
12.1 Bioderived Materials 338
12.2 Bioinspired Materials 344
12.3 Biotemplates 346
12.4 Bacteria as Biosynthesizers 347
12.5 Highlights of the Chapter 350
References 350

13. Nanophotonics for Biotechnology and Nanomedicine 355
13.1 Near-Field Bioimaging 356
13.2 Nanoparticles for Optical Diagnostics and Targeted Therapy 357
13.3 Semiconductor Quantum Dots for Bioimaging 358
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.4 Up-Converting Nanophores for Bioimaging</td>
<td>359</td>
</tr>
<tr>
<td>13.5 Biosensing</td>
<td>360</td>
</tr>
<tr>
<td>13.6 Nanoclincs for Optical Diagnostics and Targeted Therapy</td>
<td>365</td>
</tr>
<tr>
<td>13.7 Nanoclinic Gene Delivery</td>
<td>367</td>
</tr>
<tr>
<td>13.8 Nanoclinics for Photodynamic Therapy</td>
<td>371</td>
</tr>
<tr>
<td>13.9 Highlights of the Chapter</td>
<td>375</td>
</tr>
<tr>
<td>References</td>
<td>376</td>
</tr>
<tr>
<td>14. Nanophotonics and the Marketplace</td>
<td>381</td>
</tr>
<tr>
<td>14.1 Nanotechnology, Lasers, and Photonics</td>
<td>382</td>
</tr>
<tr>
<td>14.1.1 Nanonetwork</td>
<td>382</td>
</tr>
<tr>
<td>14.1.2 Worldwide Laser Sales</td>
<td>383</td>
</tr>
<tr>
<td>14.1.3 Photonics</td>
<td>383</td>
</tr>
<tr>
<td>14.1.4 Nanophotonics</td>
<td>386</td>
</tr>
<tr>
<td>14.2 Optical Nanomaterials</td>
<td>386</td>
</tr>
<tr>
<td>14.2.1 Nanoparticle Coatings</td>
<td>387</td>
</tr>
<tr>
<td>14.2.2 Sunscreen Nanoparticles</td>
<td>389</td>
</tr>
<tr>
<td>14.2.3 Self-Cleaning Glass</td>
<td>389</td>
</tr>
<tr>
<td>14.2.4 Fluorescent Quantum Dots</td>
<td>390</td>
</tr>
<tr>
<td>14.2.5 Nanobarcodes</td>
<td>391</td>
</tr>
<tr>
<td>14.2.6 Photonic Crystals</td>
<td>391</td>
</tr>
<tr>
<td>14.2.7 Photonic Crystal Fibers</td>
<td>391</td>
</tr>
<tr>
<td>14.3 Quantum-Confined Lasers</td>
<td>392</td>
</tr>
<tr>
<td>14.4 Near-Field Microscopy</td>
<td>392</td>
</tr>
<tr>
<td>14.5 Nanolithography</td>
<td>393</td>
</tr>
<tr>
<td>14.6 Future Outlook for Nanophotonics</td>
<td>394</td>
</tr>
<tr>
<td>14.6.1 Power Generation and Conversion</td>
<td>394</td>
</tr>
<tr>
<td>14.6.2 Information Technology</td>
<td>395</td>
</tr>
<tr>
<td>14.6.3 Sensor Technology</td>
<td>395</td>
</tr>
<tr>
<td>14.6.4 Nanomedicine</td>
<td>395</td>
</tr>
<tr>
<td>14.7 Highlights of the Chapter</td>
<td>396</td>
</tr>
<tr>
<td>References</td>
<td>397</td>
</tr>
<tr>
<td>Index</td>
<td>399</td>
</tr>
</tbody>
</table>