Mathematics of Optimization: Smooth and Nonsmooth Case

G. Giorgi
Faculty of Economics
University of Pavia
Pavia, Italy

A. Guerraggio
Faculty of Economics
Insubria University
Varese, Italy

J. Thierfelder
Institute of Mathematics
Technical University Ilmenau
Ilmenau, Germany

2004

CONTENTS

PREFACE vii

CHAPTER I. INTRODUCTION 1
1.1 Optimization Problems 1
1.2 Basic Mathematical Preliminaries and Notations 11
References to Chapter I 20

CHAPTER II. CONVEX SETS, CONVEX AND GENERALIZED CONVEX FUNCTIONS 23
2.1 Convex Sets and Their Main Properties 23
2.2 Separation Theorems 34
2.3 Some Particular Convex Sets. Convex Cones 47
2.4 Theorems of the Alternative for Linear Systems 59
2.5 Convex Functions 70
2.6 Directional Derivatives and Subgradients of Convex Functions 94
2.7 Conjugate Functions 102
2.8 Extrema of Convex Functions 109
2.9 Systems of Convex Functions and Nonlinear Theorems of the Alternative 111
2.10 Generalized Convex Functions 118
2.11 Relationships Between the Various Classes of Generalized Convex Functions. Properties in Optimization Problems 140
2.12 Generalized Monotonicity and Generalized Convexity 149
2.13 Comparison Between Convex and Generalized Convex Functions 153
2.14 Generalized Convexity at a Point 156
2.15 Convexity, Pseudoconvexity and Quasiconvexity of Composite Functions 161
2.16 Convexity, Pseudoconvexity and Quasiconvexity of Quadratic Functions 168
2.17 Other Types of Generalized Convex Functions 173
References to Chapter II 186

CHAPTER III. SMOOTH OPTIMIZATION PROBLEMS. SADDLE POINT CONDITIONS 201
3.1 Introduction 201
3.2 Unconstrained Extremum Problems and Extremum Problems with a Set Constraint 202
3.3 Equality Constrained Extremum Problems 209
3.4 Local Cone Approximations of Sets 221
3.5 Necessary Optimality Conditions for Problem (P) where the Optimal Point is Interior to X 248
3.6 Necessary Optimality Conditions for Problems (Pe) and (P); The Case of a Set Constraint 258
3.7 Again on Constraint Qualifications 270
3.8 Necessary Optimality Conditions for (P1) 277
3.9 Sufficient First-Order Optimality Conditions for (P) and (P1) 287
3.10 Second-Order Optimality Conditions 303
3.11 Linearization Properties of a Nonlinear Programming Problem 317
3.12 Some Specific Cases 321
3.13 Extensions to Topological Spaces 328
3.14 Optimality Criteria of the Saddle Point Type 332
References to Chapter III 342

CHAPTER IV. NONSMOOTH OPTIMIZATION PROBLEMS 359
4.1 Preliminary Remarks 359
4.2 Differentiability 360