Contents

VOLUME I: PRINCIPLES

PART A PRINCIPLES

A Principles
Richard Shoemaker
A1 Basic laser principles
Christopher C Davis
A2.1 Free-space laser resonators
Robert C Eckardt
A2.2 Waveguide laser resonators
Chris Hill
A3 Laser beam control
Jacky Byatt
A4 Nonlinear optics
Robert W Boyd
A5 Interference and polarization
Alan Rogers
A6 Optical waveguide theory
G Stewart
A7 Optical detection and noise
Gerald Boller and Jason Smith
A8 Introduction to numerical analysis for laser systems
George Lawrence

VOLUME II: LASER DESIGN AND LASER SYSTEMS

PART B LASER DESIGN, FABRICATION AND PROPERTIES

B1 Solid state lasers
R C Powell
B1.1 Transition metal ion lasers—Cr$^{3+}$
Georges Boulon
B1.2 Transition metal ion lasers other than Cr$^{3+}$
Stephen A Payne
B1.3 Rare earth ion lasers—Nd$^{3+}$
A I Zagumennyi, V A Mikhailov and I A Shcherbakov
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Author(s)</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1.4</td>
<td>Lanthanide series lasers—near infrared</td>
<td>Norman P Barnes</td>
<td>383</td>
</tr>
<tr>
<td>B1.5</td>
<td>Rare-earth ions—miscellaneous: Ce$^{3+}$, U$^{3+}$, divalent, etc</td>
<td>Gregory J Quarles</td>
<td>411</td>
</tr>
<tr>
<td>B1.6</td>
<td>Lasers based on nonlinear effects</td>
<td>Fabienne Pellé</td>
<td>431</td>
</tr>
<tr>
<td>B1.7</td>
<td>Solid state Raman lasers</td>
<td>Täsoltan T Basiev and Richard C Powell</td>
<td>469</td>
</tr>
<tr>
<td>B1.8</td>
<td>Colour centre lasers</td>
<td>T T Basiev, P G Zverev and S B Mirov</td>
<td>499</td>
</tr>
<tr>
<td>B2</td>
<td>Laser diodes</td>
<td>Ian White</td>
<td>523</td>
</tr>
<tr>
<td>B2.1</td>
<td>Basic principles of laser diodes</td>
<td>N K Dutta</td>
<td>525</td>
</tr>
<tr>
<td>B2.2</td>
<td>Spectral control in laser diodes</td>
<td>Markus-Christian Amann</td>
<td>561</td>
</tr>
<tr>
<td>B2.3</td>
<td>High-speed laser diodes</td>
<td>Peter P Vasil’ev</td>
<td>585</td>
</tr>
<tr>
<td>B2.4</td>
<td>High-power laser diodes and laser diode arrays</td>
<td>Peter Unger</td>
<td>605</td>
</tr>
<tr>
<td>B2.5.1</td>
<td>Visible laser diodes: properties of III–V red-emitting laser diodes</td>
<td>Peter Blood</td>
<td>619</td>
</tr>
<tr>
<td>B2.5.2</td>
<td>Visible laser diodes: properties of blue laser diodes</td>
<td>Robert Martin</td>
<td>641</td>
</tr>
<tr>
<td>B2.6</td>
<td>Vertical-cavity surface-emitting lasers</td>
<td>B M A Rahman and K T V Grattan</td>
<td>659</td>
</tr>
<tr>
<td>B2.7</td>
<td>Long wavelength laser diodes</td>
<td>S Anders, G Strasser and E Gornik</td>
<td>691</td>
</tr>
<tr>
<td>B2.8</td>
<td>Semiconductor lasers and optical amplifiers for switching and signal processing</td>
<td>Hitoshi Kawaguchi</td>
<td>707</td>
</tr>
<tr>
<td>B3</td>
<td>Gas lasers</td>
<td>Julian Jones</td>
<td>749</td>
</tr>
<tr>
<td>B3.1</td>
<td>Carbon dioxide lasers</td>
<td>Denis R Hall</td>
<td>751</td>
</tr>
<tr>
<td>B3.2</td>
<td>Excimer, F$_2$, N$_2$ and H$_2$ lasers</td>
<td>W J Witteman</td>
<td>791</td>
</tr>
<tr>
<td>B3.3</td>
<td>Copper and gold vapour lasers</td>
<td>Colin Webb</td>
<td>847</td>
</tr>
<tr>
<td>B3.4.1</td>
<td>Chemical lasers: COIL</td>
<td>B D Barmashenko and S Rosenwaks</td>
<td>861</td>
</tr>
<tr>
<td>B3.4.2</td>
<td>Chemical lasers: HF/DF</td>
<td>Lee H Sentman</td>
<td>881</td>
</tr>
<tr>
<td>B3.5</td>
<td>Argon and krypton ion lasers</td>
<td>Malcolm H Dunn and Tony Gutierrez</td>
<td>893</td>
</tr>
<tr>
<td>B3.6</td>
<td>Helium–neon lasers</td>
<td>Alan D White and Lisa Tsufura</td>
<td>909</td>
</tr>
</tbody>
</table>
B3.7 Helium–cadmium laser
William T Silfvast
921
B3.8 Optically pumped mid IR lasers: NH₃, C₂H₂
Mary S Tobin
929
B3.9 Far-IR lasers: HCN, H₂O
Wilhelm Prettl
951
B4 Fibre and waveguide lasers
R C Powell
961
B4.1 Fibre lasers
David Hanna
963
B4.2 High power fiber lasers
Andreas Tünnemann and Holger Zellmer
977
B4.3 Cascaded Raman fibre lasers
Clifford Headley
989
B4.4 Soliton lasers
J R Taylor
1007
B4.5 Erbium and other doped fibre amplifiers
Kevin Cordina
1025
B4.6 High-power waveguide lasers
D P Shepherd
1045
B5 Other lasers
Colin Webb
1063
B5.1 Free electron lasers and synchrotron light sources
P G O'Shea and J B Murphy
1065
B5.2 X-ray lasers
Jorge J Rocca
1087
B5.3 Liquid lasers
David H Titterton
1115
B5.4 Solid-state dye lasers
David H Titterton
1143

PART C LASER SYSTEM DESIGN

C1 Optical components
Julian Jones
1165
C1.1 Optical components
Leo H J F Beckmann
1167
C1.2 Optical control elements
Alan Greenaway
1183
C1.3 Adaptive optics and phase conjugate reflectors
Michael J Damzen and Carl Paterson
1193
C1.4 Opto-mechanical parts
Frank Luecke
1203
C1.5.1 Power conditioning: supplies for driving semiconductor laser diodes
Ralph Savioli
1211
C1.5.2 Power conditioning: supplies for driving gas discharges
(gas and solid state lasers)
I Smilanski
1217
C1.5.3 Power conditioning: supplies for driving flash tubes and arclamps for solid state lasers
Mark Greenwood and D W Miller 1237
C2 Optical pulse generation 1247
Clive Ireland
C2.1 Quasi-cw and modulated beams 1249
K Washio
C2.2 Short pulses 1257
Andreas Ostendorf
C2.3 Ultrashort pulses 1273
Derryck T Reid
C3 Frequency conversion and filtering 1313
Terence A King
C3.1 Harmonic generation—materials and methods 1315
David J Binks
C3.2 Optical parametric devices 1347
M Ebrahimzadeh
C3.3 Laser stabilization for precision measurements 1393
G P Barwood and P Gill
C4 Beam delivery 1415
Julian Jones
C4.1 Basic principles 1417
D P Hand
C4.2 Free-space optics 1425
Leo H J F Beckmann
C4.3 Fibre optic beam delivery 1461
D P Hand
C4.4 Positioning and scanning systems 1475
Jürgen Koch
C5 Laser beam measurement 1499
Julian Jones
C5.1 Beam propagation 1501
B A Ward
C5.2 Detectors 1509
Kenny Weir
C5.3 Laser energy and power measurement 1523
Robert K Tyson
C5.4 Irradiance and phase distribution measurement 1527
B Schäfer
C6 Laser safety 1535
Colin Webb
C6.1 Laser safety 1537
J Michael Green and Karl Schulmeister
PART D APPLICATIONS: CASE STUDIES

D1 Materials processing 1559
Clive Ireland

D1.1 Welding 1561
H Hügel and C Schinzel

D1.2 Cutting 1587
John Powell and Claes Magnusson

D1.3 Laser marking 1613
Terry J McKee

D1.4 Drilling 1633
S Williams

D1.5 Photolithography 1653
Shinji Okazaki

D1.6 Laser micromachining 1661
Malcolm Gower

D1.7 Rapid manufacturing 1693
Gary K Lewis

D1.8 Pulsed laser deposition of thin films 1705
Ian Boyd and D B Chrisey

D2 Optical measurement techniques 1721

D2.1 Fundamental length metrology 1723
J Flügge, F Riehle and H Kunzmann

D2.2 Laser velocimetry 1749
C Tropea

D2.3 Laser vibrometers 1779
Neil A Halliwell

D2.4 Electronic speckle pattern interferometry (ESPI) 1805
Dave Towers and Clive Buckberry

D2.5 Optical fibre hydrophones 1839
Geoffrey A Cranch and Philip J Nash

D2.6 Optical fibre Bragg grating sensors for strain measurement 1881
David A Jackson and David J Webb

D2.7 High-speed imaging 1919
Adam Whybrew

D2.8 Particle sizing 1931
Nils Damaschke, Maurice Wedd, Adam Whybrew and Damien Blondel

D3 Medical 1951

D3.1 Light–tissue interactions 1955
Steven Jacques and Michael Patterson

D3.2 Therapeutic applications: introduction 1995
Reginald Birngruber

D3.2.1 Therapeutic applications: ophthalmology 1999
Reginald Birngruber
D3.2.2 Therapeutic applications: refractive surgery
Giovanni Cennamo and Raimondo Forte

D3.2.3 Therapeutic applications: photodynamic therapy
Brian C Wilson and Stephen G Bown

D3.2.4 Therapeutic applications: thermal treatment of tumours
Stephen G Bown

D3.2.5 Therapeutic applications: dermatology—selective photothermolysis
Sean Lanigan

D3.2.6 Therapeutic applications: lasers in vascular surgery
Mahesh Pai

D3.2.7 Therapeutic applications: hardtissue/dentistry
Raimund Hibst

D3.2.8 Therapeutic applications: free-electron laser
E Duco Jansen, Michael Copeland, Glenn S Edwards, William Gabella, Karen Joos, Mark A Mackanos, Jin H Shen and Stephen R Uhlhorn

D3.3 Medical diagnostics
Brian C Wilson

D3.4 Laser applications in biology and biotechnology
Sebastian Wachsmann-Hogiu, Alexander J Annala and Daniel L Farkas

D3.5 Biomedical laser safety
Harry Moseley and Bill Davies

D4 Communications
John Marsh

D4.1 The basic point-to-point communications system
John Gowar

D4.2 High-capacity optical transmission systems
Paul Urquhart

D4.3 Local area networks
J Lehman and K L Johnson

D4.4 Fibre-to-the-chip: development of vertical cavity surface emitting laser arrays designed for integration with VLSI circuits
A V Krishnamoorthy, L M F Chirovsky, K W Goosen, J Lopata and W S Hobson

D4.5 Optical satellite communications
A Coello-Vera and M Maignan

D4.6 Smart pixel technologies and optical interconnects
Marc P Y Desmulliez and Brian S Wherrett

D5 Optical information storage
John Marsh

D5.1 Optical data storage
Tom D Milster

D5.2 Lasers in printing
Atsushi Kawamura, Seizo Suzuki and Yoshinori Hayashi

D6 Spectroscopy
Colin Webb

D6.1 Laser cooling and trapping
C S Adams and I G Hughes
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>D6.2</td>
<td>Ion trapping and laser applications to length and time metrology</td>
<td>P Gill and G P Barwood</td>
<td>2485</td>
</tr>
<tr>
<td>D6.3</td>
<td>Time-resolved spectroscopy</td>
<td>Gavin D Reid and Klaas Wynne</td>
<td>2507</td>
</tr>
<tr>
<td>D7</td>
<td>Earth and environmental sciences</td>
<td>Lance Thomas</td>
<td>2529</td>
</tr>
<tr>
<td>D7.1</td>
<td>Satellite laser ranging</td>
<td>Roger Wood and Graham Appleby</td>
<td>2531</td>
</tr>
<tr>
<td>D7.2</td>
<td>Lidar for atmospheric ozone remote sensing</td>
<td>Gérard Aancellet</td>
<td>2563</td>
</tr>
<tr>
<td>D8</td>
<td>Lasers in astronomy</td>
<td>R C Powell</td>
<td>2579</td>
</tr>
<tr>
<td>D8.1</td>
<td>Lasers in astronomy</td>
<td>Renaud Foy and Jean-Paul Pique</td>
<td>2581</td>
</tr>
<tr>
<td>D9</td>
<td>Holography: holographic optical elements and computer-generated holography</td>
<td>Mohammad R Taghizadeh</td>
<td>2625</td>
</tr>
<tr>
<td>D9.1</td>
<td>Holography: holographic optical elements—computer-generated holography—diffractive optics</td>
<td>Hans Peter Herzig</td>
<td>2627</td>
</tr>
<tr>
<td>D10</td>
<td>High-intensity lasers for plasma studies</td>
<td>Colin Webb</td>
<td>2643</td>
</tr>
<tr>
<td>D10.1</td>
<td>High-power lasers for plasma physics</td>
<td>M H R Hutchinson</td>
<td>2645</td>
</tr>
<tr>
<td>D10.2</td>
<td>High-power lasers and the extreme conditions that they can produce</td>
<td>S J Rose</td>
<td>2657</td>
</tr>
</tbody>
</table>

Index | 2665 |