Handbook of Laser Technology and Applications

Volume I: Principles

Edited by

Colin E Webb

University of Oxford

and

Julian D C Jones

Heriot-Watt University

IoP

Institute of Physics Publishing
Bristol and Philadelphia
Contents

Editorial and Advisory Board xii
List of contributors xiii
Foreword xxiii
Charles Townes
Introduction xxv
Colin Webb

VOLUME I: PRINCIPLES

PART A PRINCIPLES 1

A Principles
Richard Shoemaker 3

A1 Basic laser principles
Christopher C Davis 5

A2.1 Free-space laser resonators
Robert C Eckardt 81

A2.2 Waveguide laser resonators
Chris Hill 115

A3 Laser beam control
Jacky Byatt 135

A4 Nonlinear optics
Robert W Boyd 161

A5 Interference and polarization
Alan Rogers 185

A6 Optical waveguide theory
G Stewart 223

A7 Optical detection and noise
Gerald Buller and Jason Smith 251

A8 Introduction to numerical analysis for laser systems
George Lawrence 281

VOLUME II: LASER DESIGN AND LASER SYSTEMS

PART B LASER DESIGN, FABRICATION AND PROPERTIES 303

B1 Solid state lasers 305
R C Powell
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1.1</td>
<td>Transition metal ion lasers—Cr$^{3+}$</td>
<td>Georges Boulon</td>
<td>307</td>
</tr>
<tr>
<td>B1.2</td>
<td>Transition metal ion lasers other than Cr$^{3+}$</td>
<td>Stephen A Payne</td>
<td>339</td>
</tr>
<tr>
<td>B1.3</td>
<td>Rare earth ion lasers—Nd$^{3+}$</td>
<td>A I Zagumennyi, V A Mikhailov and I A Shcherbakov</td>
<td>353</td>
</tr>
<tr>
<td>B1.4</td>
<td>Lanthanide series lasers—near infrared</td>
<td>Norman P Barnes</td>
<td>383</td>
</tr>
<tr>
<td>B1.5</td>
<td>Rare-earth ions—miscellaneous: Ce$^{3+}$, U$^{3+}$, divalent, etc</td>
<td>Gregory J Quarles</td>
<td>411</td>
</tr>
<tr>
<td>B1.6</td>
<td>Lasers based on nonlinear effects</td>
<td>Fabienne Pellé</td>
<td>431</td>
</tr>
<tr>
<td>B1.7</td>
<td>Solid state Raman lasers</td>
<td>Tasoltan T Basiev and Richard C Powell</td>
<td>469</td>
</tr>
<tr>
<td>B1.8</td>
<td>Colour centre lasers</td>
<td>T T Basiev, P G Zverev and S B Mirov</td>
<td>499</td>
</tr>
<tr>
<td>B2</td>
<td>Laser diodes</td>
<td>Ian White</td>
<td>523</td>
</tr>
<tr>
<td>B2.1</td>
<td>Basic principles of laser diodes</td>
<td>N K Dutta</td>
<td>525</td>
</tr>
<tr>
<td>B2.2</td>
<td>Spectral control in laser diodes</td>
<td>Markus-Christian Amann</td>
<td>561</td>
</tr>
<tr>
<td>B2.3</td>
<td>High-speed laser diodes</td>
<td>Peter P Vasil’ev</td>
<td>585</td>
</tr>
<tr>
<td>B2.4</td>
<td>High-power laser diodes and laser diode arrays</td>
<td>Peter Unger</td>
<td>605</td>
</tr>
<tr>
<td>B2.5.1</td>
<td>Visible laser diodes: properties of III–V red-emitting laser diodes</td>
<td>Peter Blood</td>
<td>619</td>
</tr>
<tr>
<td>B2.5.2</td>
<td>Visible laser diodes: properties of blue laser diodes</td>
<td>Robert Martin</td>
<td>641</td>
</tr>
<tr>
<td>B2.6</td>
<td>Vertical-cavity surface-emitting lasers</td>
<td>B M A Rahman and K T V Grattan</td>
<td>659</td>
</tr>
<tr>
<td>B2.7</td>
<td>Long wavelength laser diodes</td>
<td>S Anders, G Strasser and E Gornik</td>
<td>691</td>
</tr>
<tr>
<td>B2.8</td>
<td>Semiconductor lasers and optical amplifiers for switching</td>
<td>Hitoshi Kawaguchi</td>
<td>707</td>
</tr>
<tr>
<td>B3</td>
<td>Gas lasers</td>
<td>Julian Jones</td>
<td>749</td>
</tr>
<tr>
<td>B3.1</td>
<td>Carbon dioxide lasers</td>
<td>Denis R Hall</td>
<td>751</td>
</tr>
<tr>
<td>B3.2</td>
<td>Excimer, F$_2$, N$_2$ and H$_2$ lasers</td>
<td>W J Witteman</td>
<td>791</td>
</tr>
<tr>
<td>B3.3</td>
<td>Copper and gold vapour lasers</td>
<td>Colin Webb</td>
<td>847</td>
</tr>
<tr>
<td>B3.4.1</td>
<td>Chemical lasers: COIL</td>
<td>B D Barmashenko and S Rosenwaks</td>
<td>861</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3.4.2</td>
<td>Chemical lasers: HF/DF</td>
<td>Lee H Sentman</td>
<td>881</td>
</tr>
<tr>
<td>B3.5</td>
<td>Argon and krypton ion lasers</td>
<td>Malcolm H Dunn and Tony Gutierrez</td>
<td>893</td>
</tr>
<tr>
<td>B3.6</td>
<td>Helium–neon lasers</td>
<td>Alan D White and Lisa Tsufura</td>
<td>909</td>
</tr>
<tr>
<td>B3.7</td>
<td>Helium–cadmium laser</td>
<td>William T Silfvast</td>
<td>921</td>
</tr>
<tr>
<td>B3.8</td>
<td>Optically pumped mid IR lasers: NH₃, C₂H₂</td>
<td>Mary S Tobin</td>
<td>929</td>
</tr>
<tr>
<td>B3.9</td>
<td>Far-IR lasers: HCN, H₂O</td>
<td>Wilhelm Prettl</td>
<td>951</td>
</tr>
<tr>
<td>B4</td>
<td>Fibre and waveguide lasers</td>
<td>R C Powell</td>
<td>961</td>
</tr>
<tr>
<td>B4.1</td>
<td>Fibre lasers</td>
<td>David Hanna</td>
<td>963</td>
</tr>
<tr>
<td>B4.2</td>
<td>High power fiber lasers</td>
<td>Andreas Tünnermann and Holger Zellmer</td>
<td>977</td>
</tr>
<tr>
<td>B4.3</td>
<td>Cascaded Raman fibre lasers</td>
<td>Clifford Headley</td>
<td>989</td>
</tr>
<tr>
<td>B4.4</td>
<td>Soliton lasers</td>
<td>J R Taylor</td>
<td>1007</td>
</tr>
<tr>
<td>B4.5</td>
<td>Erbium and other doped fibre amplifiers</td>
<td>Kevin Cordina</td>
<td>1025</td>
</tr>
<tr>
<td>B4.6</td>
<td>High-power waveguide lasers</td>
<td>D P Shepherd</td>
<td>1045</td>
</tr>
<tr>
<td>B5</td>
<td>Other lasers</td>
<td>Colin Webb</td>
<td>1063</td>
</tr>
<tr>
<td>B5.1</td>
<td>Free electron lasers and synchrotron light sources</td>
<td>P G O'Shea and J B Murphy</td>
<td>1065</td>
</tr>
<tr>
<td>B5.2</td>
<td>X-ray lasers</td>
<td>Jorge J Rocca</td>
<td>1087</td>
</tr>
<tr>
<td>B5.3</td>
<td>Liquid lasers</td>
<td>David H Titterton</td>
<td>1115</td>
</tr>
<tr>
<td>B5.4</td>
<td>Solid-state dye lasers</td>
<td>David H Titterton</td>
<td>1143</td>
</tr>
<tr>
<td>PART C</td>
<td>LASER SYSTEM DESIGN</td>
<td></td>
<td>1163</td>
</tr>
<tr>
<td>C1</td>
<td>Optical components</td>
<td>Julian Jones</td>
<td>1165</td>
</tr>
<tr>
<td>C1.1</td>
<td>Optical components</td>
<td>Leo H J F Beckmann</td>
<td>1167</td>
</tr>
<tr>
<td>C1.2</td>
<td>Optical control elements</td>
<td>Alan Greenaway</td>
<td>1183</td>
</tr>
<tr>
<td>C1.3</td>
<td>Adaptive optics and phase conjugate reflectors</td>
<td>Michael J Damzen and Carl Paterson</td>
<td>1193</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Authors</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>C1.4</td>
<td>Opto-mechanical parts</td>
<td>Frank Luecke</td>
<td>1203</td>
</tr>
<tr>
<td>C1.5.1</td>
<td>Power conditioning: supplies for driving semiconductor laser diodes</td>
<td>Ralph Savioli</td>
<td>1211</td>
</tr>
<tr>
<td>C1.5.2</td>
<td>Power conditioning: supplies for driving gas discharges (gas and solid state lasers)</td>
<td>I Smilanski</td>
<td>1217</td>
</tr>
<tr>
<td>C1.5.3</td>
<td>Power conditioning: supplies for driving flash tubes and arclamps for solid state lasers</td>
<td>Mark Greenwood and D W Miller</td>
<td>1237</td>
</tr>
<tr>
<td>C2</td>
<td>Optical pulse generation</td>
<td>Clive Ireland</td>
<td>1247</td>
</tr>
<tr>
<td>C2.1</td>
<td>Quasi-cw and modulated beams</td>
<td>K Washio</td>
<td>1249</td>
</tr>
<tr>
<td>C2.2</td>
<td>Short pulses</td>
<td>Andreas Ostendorf</td>
<td>1257</td>
</tr>
<tr>
<td>C2.3</td>
<td>Ultrashort pulses</td>
<td>Derryck T Reid</td>
<td>1273</td>
</tr>
<tr>
<td>C3</td>
<td>Frequency conversion and filtering</td>
<td>Terence A. King</td>
<td>1313</td>
</tr>
<tr>
<td>C3.1</td>
<td>Harmonic generation—materials and methods</td>
<td>David J. Binks</td>
<td>1315</td>
</tr>
<tr>
<td>C3.2</td>
<td>Optical parametric devices</td>
<td>M. Ebrahimzadeh</td>
<td>1347</td>
</tr>
<tr>
<td>C3.3</td>
<td>Laser stabilization for precision measurements</td>
<td>G P Barwood and P Gill</td>
<td>1393</td>
</tr>
<tr>
<td>C4</td>
<td>Beam delivery</td>
<td>Julian Jones</td>
<td>1415</td>
</tr>
<tr>
<td>C4.1</td>
<td>Basic principles</td>
<td>D P Hand</td>
<td>1417</td>
</tr>
<tr>
<td>C4.2</td>
<td>Free-space optics</td>
<td>Leo H J F Beckmann</td>
<td>1425</td>
</tr>
<tr>
<td>C4.3</td>
<td>Fibre optic beam delivery</td>
<td>D P Hand</td>
<td>1461</td>
</tr>
<tr>
<td>C4.4</td>
<td>Positioning and scanning systems</td>
<td>Jürgen Koch</td>
<td>1475</td>
</tr>
<tr>
<td>C5</td>
<td>Laser beam measurement</td>
<td>Julian Jones</td>
<td>1499</td>
</tr>
<tr>
<td>C5.1</td>
<td>Beam propagation</td>
<td>B A Ward</td>
<td>1501</td>
</tr>
<tr>
<td>C5.2</td>
<td>Detectors</td>
<td>Kenny Weir</td>
<td>1509</td>
</tr>
<tr>
<td>C5.3</td>
<td>Laser energy and power measurement</td>
<td>Robert K Tyson</td>
<td>1523</td>
</tr>
<tr>
<td>C5.4</td>
<td>Irradiance and phase distribution measurement</td>
<td>B Schäfer</td>
<td>1527</td>
</tr>
<tr>
<td>C6</td>
<td>Laser safety</td>
<td>Colin Webb</td>
<td>1535</td>
</tr>
</tbody>
</table>
C6.1 Laser safety

J Michael Green and Karl Schulmeister 1537

VOLUME III: APPLICATIONS

PART D APPLICATIONS: CASE STUDIES 1557

D1 Materials processing 1559

Clive Ireland

D1.1 Welding 1561

H Hügel and C Schinzel

D1.2 Cutting 1587

John Powell and Claes Magnusson

D1.3 Laser marking 1613

Terry J McKee

D1.4 Drilling 1633

S Williams

D1.5 Photolithography 1653

Shinji Okazaki

D1.6 Laser micromachining 1661

Malcolm Gower

D1.7 Rapid manufacturing 1693

Gary K Lewis

D1.8 Pulsed laser deposition of thin films 1705

Ian Boyd and D B Chrisey

D2 Optical measurement techniques 1721

Julian Jones

D2.1 Fundamental length metrology 1723

J Flügge, F Riehle and H Kunzmann

D2.2 Laser velocimetry 1749

C Tropea

D2.3 Laser vibrometers 1779

Neil A Halliwell

D2.4 Electronic speckle pattern interferometry (ESPI) 1805

Dave Towers and Clive Buckberry

D2.5 Optical fibre hydrophones 1839

Geoffrey A Cranch and Philip J Nash

D2.6 Optical fibre Bragg grating sensors for strain measurement 1881

David A Jackson and David J Webb

D2.7 High-speed imaging 1919

Adam Whybrew

D2.8 Particle sizing 1931

Nils Damaschke, Maurice Wedd, Adam Whybrew and Damien Blondel

D3 Medical 1951

Terence A King and Brian C Wilson

D3.1 Light–tissue interactions 1955

Steven Jacques and Michael Patterson
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>D3.2</td>
<td>Therapeutic applications: introduction</td>
<td>Reginald Birngruber</td>
<td>1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D3.2.1 Therapeutic applications: ophthalmology</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reginald Birngruber</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D3.2.2 Therapeutic applications: refractive surgery</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Giovanni Cennamo and Raimondo Forte</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D3.2.3 Therapeutic applications: photodynamic therapy</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Brian C Wilson and Stephen G Bown</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D3.2.4 Therapeutic applications: thermal treatment of tumours</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stephen G Bown</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D3.2.5 Therapeutic applications: dermatology—selective photothermolysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sean Lanigan</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D3.2.6 Therapeutic applications: lasers in vascular surgery</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mahesh Pai</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D3.2.7 Therapeutic applications: hardtissue/dentistry</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Raimund Hibst</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D3.2.8 Therapeutic applications: free-electron laser</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>E Duco Jansen, Michael Copeland, Glenn S Edwards, William Gabella, Karen Joos, Mark A Mackanos, Jin H Shen and Stephen R Uhlhorn</td>
<td></td>
</tr>
<tr>
<td>D3.3</td>
<td>Medical diagnostics</td>
<td>Brian C Wilson</td>
<td>2087</td>
</tr>
<tr>
<td>D3.4</td>
<td>Laser applications in biology and biotechnology</td>
<td>Sebastian Wachsmann-Hogiu, Alexander J Annala and Daniel L Farkas</td>
<td>2123</td>
</tr>
<tr>
<td>D3.5</td>
<td>Biomedical laser safety</td>
<td>Harry Moseley and Bill Davies</td>
<td>2155</td>
</tr>
<tr>
<td>D4</td>
<td>Communications</td>
<td>John Marsh</td>
<td>2181</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D4.1 The basic point-to-point communications system</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>John Gowar</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D4.2 High-capacity optical transmission systems</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Paul Urquhart</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D4.3 Local area networks</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>J Lehman and K L Johnson</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>*D4.4 Fibre-to-the-chip: development of vertical cavity surface emitting laser arrays designed for integration with VLSI circuits</td>
<td>2321</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A V Krishnamoorthy, L M F Chirovsky, K W Goosen, J Lopata and W S Hobson</td>
<td></td>
</tr>
<tr>
<td>D4.5</td>
<td>Optical satellite communications</td>
<td>A Coello-Vera and M Maignan</td>
<td>2345</td>
</tr>
<tr>
<td>D4.6</td>
<td>Smart pixel technologies and optical interconnects</td>
<td>Marc P Y Desmulliez and Brian S Wherrett</td>
<td>2363</td>
</tr>
<tr>
<td>D5</td>
<td>Optical information storage</td>
<td>John Marsh</td>
<td>2389</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D5.1 Optical data storage</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tom D Milster</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D5.2 Lasers in printing</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Atsushi Kawamura, Seizo Suzuki and Yoshinori Hayashi</td>
<td>2421</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Authors</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>----------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>D6</td>
<td>Spectroscopy</td>
<td>Colin Webb</td>
<td>2463</td>
</tr>
<tr>
<td>D6.1</td>
<td>Laser cooling and trapping</td>
<td>C S Adams and I G Hughes</td>
<td>2465</td>
</tr>
<tr>
<td>D6.2</td>
<td>Ion trapping and laser applications to length and time metrology</td>
<td>P Gill and G P Barwood</td>
<td>2485</td>
</tr>
<tr>
<td>D6.3</td>
<td>Time-resolved spectroscopy</td>
<td>Gavin D Reid and Klaas Wynne</td>
<td>2507</td>
</tr>
<tr>
<td>D7</td>
<td>Earth and environmental sciences</td>
<td>Lance Thomas</td>
<td>2529</td>
</tr>
<tr>
<td>D7.1</td>
<td>Satellite laser ranging</td>
<td>Roger Wood and Graham Appleby</td>
<td>2531</td>
</tr>
<tr>
<td>D7.2</td>
<td>Lidar for atmospheric ozone remote sensing</td>
<td>Gérard Aancellet</td>
<td>2563</td>
</tr>
<tr>
<td>D8</td>
<td>Lasers in astronomy</td>
<td>R C Powell</td>
<td>2579</td>
</tr>
<tr>
<td>D8.1</td>
<td>Lasers in astronomy</td>
<td>Renaud Foy and Jean-Paul Pique</td>
<td>2581</td>
</tr>
<tr>
<td>D9</td>
<td>Holography: holographic optical elements and computer-generated</td>
<td>Mohammad R Taghizadeh</td>
<td>2625</td>
</tr>
<tr>
<td></td>
<td>holography</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D9.1</td>
<td>Holography: holographic optical elements—computer-generated</td>
<td>Hans Peter Herzig</td>
<td>2627</td>
</tr>
<tr>
<td></td>
<td>holography—diffractive optics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D10</td>
<td>High-intensity lasers for plasma studies</td>
<td>Colin Webb</td>
<td>2643</td>
</tr>
<tr>
<td>D10.1</td>
<td>High-power lasers for plasma physics</td>
<td>M H R Hutchinson</td>
<td>2645</td>
</tr>
<tr>
<td>D10.2</td>
<td>High-power lasers and the extreme conditions that they can produce</td>
<td>S J Rose</td>
<td>2657</td>
</tr>
</tbody>
</table>

Index | 2665 |