Computational Colour Science using MATLAB

Stephen Westland
School of Design,
University of Leeds, UK

Caterina Ripamonti
Department of Psychology,
University of Pennsylvania, USA

John Wiley & Sons, Ltd
Contents

Acknowledgements xi

1 Introduction 1
 1.1 Who this book is for 1
 1.2 Why base this book upon MATLAB? 2
 1.3 A brief review of the CIE system of colorimetry 4

2 Linear Algebra for Beginners 13
 2.1 Some basic definitions 13
 2.2 Solving systems of simultaneous equations 14
 2.3 Transposes and inverses 16
 2.4 Linear and non-linear transforms 16

3 A Short Introduction to MATLAB 19
 3.1 Matrix operations 20
 3.2 Computing the transpose and inverse of matrices 22
 3.3 M-files 25
 3.4 Using functions in MATLAB 25

4 Computing CIE Tristimulus Values 27
 4.1 Introduction 27
 4.2 Standard colour-matching functions 27
 4.3 Interpolation methods 29
 4.4 Extrapolation methods 33
 4.5 Tables of weights 34
 4.6 Correction for spectral bandpass 35
 4.7 Chromaticity diagrams 35
 4.8 Implementations and examples 37
 4.8.1 Spectral bandpass correction 37
 4.8.2 Reflectance interpolation 39
 4.8.3 Computing tristimulus values 41
 4.8.4 Plotting the spectral locus 45

5 Computing Colour Difference 49
 5.1 Introduction 49
 5.2 CIELAB and CIELUV colour space 50
5.3 CIELAB colour difference 52
5.4 Optimised colour-difference formulae 55
 5.4.1 CMC(l:c) 55
 5.4.2 CIE94 56
 5.4.3 CIEDE2000 57
5.5 Implementations and examples 58
 5.5.1 Computing CIELAB and CIELUV coordinates 58
 5.5.2 Computing colour difference 68

6 Chromatic-adaptation Transforms and Colour Appearance 81
 6.1 Introduction 81
 6.2 CATs 82
 6.2.1 CIECAT94 86
 6.2.2 CMCCAT97 89
 6.2.3 CMCCAT2000 90
 6.3 CAMs 92
 6.3.1 CIECAM97s 93
 6.3.2 CMCCAM2000 96
 6.4 Implementations and examples 96
 6.4.1 CATs 96
 6.4.2 Computing colour appearance 104

7 Characterization of Computer Displays 111
 7.1 Introduction 111
 7.2 Gamma 112
 7.3 The GOG model 112
 7.4 Device-independent transformation 114
 7.5 Typical characterization procedure 115
 7.6 Implementations and examples 116

8 Characterization of Cameras 127
 8.1 Introduction 127
 8.2 Correction for non-linearity 128
 8.3 Device-independent representation 129
 8.4 Implementations and examples 130

9 Characterization of Printers 141
 9.1 Introduction 141
 9.2 Physical models 142
 9.3 Neural networks 143
 9.4 Characterization of half-tone printers 145
 9.4.1 Correction for non-linearity 145
 9.4.2 Device-independent representation 146
 9.4.3 Kubelka–Munk model 147
CONTENTS

9.5 Implementations and examples 150
 9.5.1 Half-tone printer 150
 9.5.2 Continuous-tone printer 155

10 Multispectral Imaging 163
 10.1 Introduction 163
 10.2 Computational colour constancy and linear models 164
 10.3 Surface and illuminant estimation algorithms 170
 10.4 Techniques for multispectral imaging 171
 10.4.1 The Hardeberg method 171
 10.4.2 The Imai and Berns method 172
 10.4.3 Methods based on maximum smoothness 172
 10.5 Implementations and examples 172
 10.5.1 Deriving a set of basis functions 172
 10.5.2 Representation of reflectance spectra in a linear model 176
 10.5.3 Estimation of reflectance spectra from tristimulus values 179
 10.5.4 Estimation of reflectance spectra from camera responses 183
 10.5.5 Fourier operations on reflectance spectra 185

11 Colour Toolbox 189
 11.1 cband.m (Box 1) 189
 11.2 pinterp.m (Box 2) 189
 11.3 r2xyz.m (Box 3) 190
 11.4 plocus.m (Box 4) 190
 11.5 xyz2lab.m (Box 5) 190
 11.6 lab2xyz.m (Box 6) 190
 11.7 xyz2luv.m (Box 7) 191
 11.8 car2pol.m (Box 8) 191
 11.9 pol2car (Box 9) 191
 11.10 cIELabDe.m (Box 10) 191
 11.11 dhpolarity (Box 11) 192
 11.12 cmcDe.m (Box 12) 192
 11.13 cie94De.m (Box 13) 192
 11.14 cie00De.m (Box 14) 193
 11.15 cmccat97.m (Box 15) 193
 11.16 cmccat00.m (Box 16) 193
 11.17 ciecam97s.m (Box 17) 194
 11.18 gogtest.m (Box 18) 194
 11.19 compgog.m (Box 19) 195
 11.20 rgb2xyz.m (Box 20) 195
 11.21 xyz2rgb.m (Box 21) 195
 11.22 compigog (Box 22) 195
 11.23 getlincam.m (Box 23) 196
CONTENTS

11.24 lincam (Box 24) 196
11.25 getrc (Box 25) 196
11.26 r2xyz (Box 26) 197

References 199
Index 205