Nanophysics and Nanotechnology

An Introduction to Modern Concepts in Nanoscience
Contents

Preface VII

1 Introduction 1
1.1 Nanometers, Micrometers, Millimeters 3
1.2 Moores Law 7
1.3 Esakis Quantum Tunneling Diode 8
1.4 Quantum Dots of Many Colors 9
1.5 GMR 40 Gb Hard Drive Read Heads 11
1.6 Accelerometers in your Car 13
1.7 Nanopore Filters 14
1.8 Nanoscale Elements in Traditional Technologies 14

2 Systematics of Making Things Smaller, Pre-quantum 17
2.1 Mechanical Frequencies Increase in Small Systems 17
2.2 Scaling Relations Illustrated by a Simple Harmonic Oscillator 20
2.3 Scaling Relations Illustrated by Simple Circuit Elements 21
2.4 Thermal Time Constants and Temperature Differences Decrease 22
2.5 Viscous Forces Become Dominant for Small Particles in Fluid Media 22
2.6 Frictional Forces can Disappear in Symmetric Molecular Scale Systems 24

3 What are Limits to Smallness? 27
3.1 Particle (Quantum) Nature of Matter: Photons, Electrons, Atoms, Molecules 27
3.2 Biological Examples of Nanomotors and Nanodevices 28
3.2.1 Linear Spring Motors 29
3.2.2 Linear Engines on Tracks 30
3.2.3 Rotary Motors 33
3.2.4 Ion Channels, the Nanotransistors of Biology 36
3.3 How Small can you Make it? 38
3.3.1 What are the Methods for Making Small Objects? 38
3.3.2 How Can you See What you Want to Make? 39
X | Contents

3.3.3 How Can you Connect it to the Outside World? 41
3.3.4 If you Can't See it or Connect to it, Can you Make it Self-assemble and Work on its Own? 41
3.3.5 Approaches to Assembly of Small Three-dimensional Objects 41

4 Quantum Nature of the Nanoworld 47
4.1 Bohr's Model of the Nuclear Atom 48
4.1.1 Quantization of Angular Momentum 48
4.1.2 Extensions of Bohr's Model 49
4.2 Particle-wave Nature of Light and Matter, DeBroglie Formulas $\lambda = h/p$, $E = h\nu$ 50
4.3 Wavefunction Ψ for Electron, Probability Density $\Psi^*\Psi$, Traveling and Standing Waves 51
4.4 Maxwell's Equations; E and B as Wavefunctions for Photons, Optical Fiber Modes 52
4.5 The Heisenberg Uncertainty Principle 53
4.6 Schrodinger Equation, Quantum States and Energies, Barrier Tunneling 54
4.6.1 Schrodinger Equations in one Dimension 55
4.6.2 The Trapped Particle in one Dimension 56
4.6.3 Reflection and Tunneling at a Potential Step 58
4.6.4 Penetration of a Barrier 60
4.6.5 Trapped Particles in Two and Three Dimensions: Quantum Dot 61
4.6.6 2D Bands and Quantum Wires 63
4.6.7 The Simple Harmonic Oscillator 65
4.6.8 Schrodinger Equation in Spherical Polar Coordinates 66
4.7 The Hydrogen Atom, One-electron Atoms, Excitons 66
4.8 Fermions, Bosons and Occupation Rules 72

5 Quantum Consequences for the Macroworld 75
5.1 Chemical Table of the Elements 75
5.2 Nano-symmetry, Di-atoms, and Ferromagnets 76
5.2.1 Indistinguishable Particles, and their Exchange 76
5.2.2 The Hydrogen Molecule, Di-hydrogen: The Covalent Bond 78
5.3 More Purely Nanophysical Forces: van der Waals, Casimir, and Hydrogen Bonding 80
5.3.1 The Polar and van der Waals Fluctuation Forces 81
5.3.2 The Casimir Force 84
5.3.3 The Hydrogen Bond 88
5.4 Metals as Boxes of Free Electrons: Fermi Level, DOS, Dimensionality 89
5.5 Periodic Structures (e.g. Si, GaAs, InSb, Cu): Kronig–Penney Model for Electron Bands and Gaps 92
5.6 Electron Bands and Conduction in Semiconductors and Insulators 97
5.7 Hydrogenic Donors and Acceptors 102
5.8 More about Ferromagnetism, the Nanophysical Basis of Disk Memory 103

5.9 Surfaces are different, Schottky barrier thickness
\[W = \left[2\varepsilon_0 V_B / e N_D \right]^{1/2} \] 106

6 Self-assembled Nanostructures in Nature and Industry 109
6.1 Carbon Atom \(^{12}\)C \(1s^2 2p^4\) (0.07 nm) 110
6.2 Methane \(\text{CH}_4\), Ethane \(\text{C}_2\text{H}_6\), and Octane \(\text{C}_8\text{H}_{18}\) 111
6.3 Ethylene \(\text{C}_2\text{H}_4\), Benzene \(\text{C}_6\text{H}_6\), and Acetylene \(\text{C}_2\text{H}_2\) 112
6.4 \(\text{C}_{60}\) Buckyball ~0.5 nm 112
6.5 \(\text{C}_n\) Nanotube ~0.5 nm 113
6.6 InAs Quantum Dot ~5 nm 116
6.7 \(\text{AgBr}\) Nanocrystal 0.1–2 \(\mu\)m 117
6.8 \(\text{Fe}_3\text{O}_4\) Magnetite and \(\text{Fe}_3\text{S}_4\) Greigite Nanoparticles in Magnetotactic Bacteria 118
6.9 Self-assembled Monolayers on \(\text{Au}\) and Other Smooth Surfaces 119

7 Physics-based Experimental Approaches to Nanofabrication and Nanotechnology 123
7.1 Silicon Technology: the INTEL-IBM Approach to Nanotechnology 124
7.1.1 Patterning, Masks, and Photolithography 124
7.1.2 Etching Silicon 125
7.1.3 Defining Highly Conducting Electrode Regions 126
7.1.4 Methods of Deposition of Metal and Insulating Films 126
7.2 Lateral Resolution (Linewidths) Limited by Wavelength of Light, now 180 nm 128
7.2.1 Optical and x-ray Lithography 128
7.2.2 Electron-beam Lithography 129
7.3 Sacrificial Layers, Suspended Bridges, Single-electron Transistors 129
7.4 What is the Future of Silicon Computer Technology? 131
7.5 Heat Dissipation and the RSFQ Technology 132
7.6 Scanning Probe (Machine) Methods: One Atom at a Time 136
7.7 Scanning Tunneling Microscope (STM) as Prototype Molecular Assembler 138
7.7.1 Moving Au Atoms, Making Surface Molecules 138
7.7.2 Assembling Organic Molecules with an STM 141
7.8 Atomic Force Microscope (AFM) Arrays 142
7.8.1 Cantilever Arrays by Photolithography 142
7.8.2 Nanofabrication with an AFM 143
7.9 Fundamental Questions: Rates, Accuracy and More 144

8 Looking into the Future 147
8.1 Drexler's Mechanical (Molecular) Axle and Bearing 147
8.1.1 Smalley's Refutation of Machine Assembly 148
8.1.2 Van der Waals Forces for Frictionless Bearings? 150
8.2 The Concept of the Molecular Assembler is Flawed 150
8.3 Could Molecular Machines Revolutionize Technology or even Self-replicate to Threaten Terrestrial Life? 152
8.4 What about Genetic Engineering and Robotics? 153
8.5 Is there a Posthuman Future as Envisioned by Fukuyama? 155

Exercises 159

Index 165