Series in Condensed Matter Physics

The Magnetocaloric Effect and its Applications

A M Tishin

Physics Department,
M V Lomonosov Moscow State University, Moscow, Russia

and

Y I Spichkin

Advanced Magnetic Technologies and Consulting Ltd,
Moscow, Russia

IoP

Institute of Physics Publishing
Bristol and Philadelphia
Contents

Preface ix
Acknowledgments x

1 Introduction 1

2 Physics and models of magnetocaloric effect 4
 2.1 General thermodynamic approach 4
 2.2 Magnetocaloric effect in the frames of the theory of second-order phase transitions 9
 2.3 Statistical and mean-field model of a magnetic material 10
 2.4 Entropy, its change and magnetocaloric effect 14
 2.5 MCE at the first-order transitions 28
 2.6 MCE in ferrimagnetic and antiferromagnetic materials 32
 2.7 MCE in the vicinity of magnetic phase transitions 36
 2.8 MCE in inhomogeneous ferromagnets 42
 2.9 MCE in superparamagnetic systems 44
 2.10 Anisotropic and magnetoeleastic contributions to the MCE 49
 2.11 Heat capacity 52
 2.12 MCE and elastocaloric effect 58
 2.13 Adiabatic demagnetization 62

3 Methods of magnetocaloric properties investigation 69
 3.1 Direct methods 69
 3.1.1 Measurements in changing magnetic field 69
 3.1.2 Measurements in static magnetic field 74
 3.1.3 Thermoacoustic method 77
 3.2 Indirect methods 81
 3.2.1 Magnetization measurements 81
 3.2.1.1 Isothermal magnetization measurements 81
 3.2.1.2 Adiabatic magnetization measurements 84
3.2.2 Heat capacity measurements 86
 3.2.2.1 Heat pulse calorimetry 90
 3.2.3 Other methods 94

4 Magnetocaloric effect in 3d metals, alloys and compounds 96
 4.1 Ferromagnetic 3d metals 96
 4.2 Alloys and compounds 105
 4.3 3d thin films 123

5 Magnetocaloric effect in oxides 126
 5.1 Garnets 126
 5.1.1 Rare earth iron garnets 126
 5.1.2 Rare earth gallium and aluminium garnets 131
 5.2 Perovskites 137
 5.2.1 Rare earth orthoaluminates 137
 5.2.2 Other RMeO₃ perovskites 142
 5.2.3 Manganites and related compounds 143
 5.3 3d oxide compounds 168
 5.4 RXO₄ compounds 175

6 Magnetocaloric effect in intermetallic compounds 179
 6.1 Rare earth–nonmagnetic element compounds 179
 6.1.1 Rare earth–aluminium compounds 179
 6.1.2 Rare earth–Cu, Zn, Ga, Rh, Pd, Ag, In 193
 6.2 Rare earth–nickel 200
 6.3 Rare earth–iron 211
 6.3.1 RFe₂, RFe₃ and R₂Fe₁₇ compounds 211
 6.3.2 LaFe₁₃ compounds 220
 6.3.3 Other rare earth–iron compounds 225
 6.4 Rare earth–cobalt 225
 6.5 Rare earth–manganese 244

7 Magnetocaloric effect in rare earth–metalloid compounds 247
 7.1 Compounds with Sb and As 247
 7.2 Silicides and germanides 250
 7.2.1 Ternary compounds of rare earths with Si and Ge 250
 7.2.2 Magnetocaloric effect in R₅(Si–Ge)₄ alloys 258

8 Magnetocaloric effect in rare earth metals and alloys 276
 8.1 Rare earth metals 277
8.1.1 Gadolinium 277
8.1.2 Terbium 284
8.1.3 Dysprosium 294
8.1.4 Holmium 302
8.1.5 Erbium 303
8.1.6 Thulium 306
8.1.7 Neodimium 308
8.1.8 Theoretically available MCE in heavy rare earth metals 309
8.2 Rare earth alloys 316
8.2.1 Tb–Gd alloys 316
8.2.2 Gd–Dy, Gd–Ho and Gd–Er alloys 321
8.2.3 Dy–Y, Tb–Y, Er–La and Er–Pr alloys 322
8.2.4 Tb–Dy alloys 326
Contents

12 Conclusion 418

Appendix 1 Units used in the book 422

Appendix 2 Magnetic, thermal and physical properties of some metals, alloys, compounds and other materials 428

References 440

Index 463