Michael Bildhauer

Convex Variational Problems
Linear, Nearly Linear and Anisotropic Growth Conditions

Springer
Contents

1 Introduction ... 1

2 Variational problems with linear growth: the general setting 13
 2.1 Construction of a solution for the dual problem which is of
 class $W^{1}_{2, \text{loc}}(\Omega; \mathbb{R}^{N})$ 14
 2.1.1 The dual problem ... 14
 2.1.2 Regularization .. 16
 2.1.3 $W^{1}_{2, \text{loc}}$-regularity for the dual problem 19
 2.2 A uniqueness theorem for the dual problem 20
 2.3 Partial $C^{1, \alpha}$- and $C^{0, \alpha}$-regularity, respectively, for generalized
 minimizers and for the dual solution 25
 2.3.1 Partial $C^{1, \alpha}$-regularity of generalized minimizers ... 26
 2.3.2 Partial $C^{0, \alpha}$-regularity of the dual solution 29
 2.4 Degenerate variational problems with linear growth 32
 2.4.1 The duality relation for degenerate problems 33
 2.4.2 Application: an intrinsic regularity theory for σ 39

3 Variational integrands with (s, μ, q)-growth 41
 3.1 Existence in Orlicz-Sobolev spaces 42
 3.2 The notion of (s, μ, q)-growth – examples 44
 3.3 A priori gradient bounds and local $C^{1, \alpha}$-estimates for scalar
 and structured vector-valued problems 50
 3.3.1 Regularization .. 52
 3.3.2 A priori L^q-estimates 54
 3.3.3 Proof of Theorem 3.16 61
 3.3.4 Conclusion ... 67
 3.4 Partial regularity in the general vectorial setting 69
 3.4.1 Regularization .. 69
 3.4.2 A Caccioppoli-type inequality 70
 3.4.3 Blow-up .. 72
 3.4.3.1 Blow-up and limit equation 74
 3.4.3.2 An auxiliary proposition 76
 3.4.3.3 Strong convergence 83
 3.4.3.4 Conclusion ... 86
 3.4.4 Iteration ... 87
3.5 Comparison with some known results .. 89
 3.5.1 The scalar case .. 89
 3.5.2 The vectorial setting .. 90
3.6 Two-dimensional anisotropic variational problems 91

4 Variational problems with linear growth: the case of
 μ-elliptic integrands .. 97
 4.1 The case $\mu < 1 + 2/n$.. 100
 4.1.1 Regularization ... 101
 4.1.2 Some remarks on the dual problem 101
 4.1.3 Proof of Theorem 4.4 .. 103
 4.2 Bounded generalized solutions ... 104
 4.2.1 Regularization ... 108
 4.2.2 The limit case $\mu = 3$.. 111
 4.2.2.1 Higher local integrability 111
 4.2.2.2 The independent variable 113
 4.2.3 L^p-estimates in the case $\mu < 3$ 116
 4.2.4 A priori gradient bounds 118
 4.3 Two-dimensional problems ... 122
 4.3.1 Higher local integrability in the limit case 123
 4.3.2 The case $\mu < 3$.. 129
 4.4 A counterexample ... 132

5 Bounded solutions for convex variational problems with a
 wide range of anisotropy .. 141
 5.1 Vector-valued problems ... 142
 5.2 Scalar obstacle problems .. 149

6 Anisotropic linear/superlinear growth in the scalar case 161

A Some remarks on relaxation .. 173
 A.1 The approach known from the minimal surface case 174
 A.2 The approach known from the theory of perfect plasticity 176
 A.3 Two uniqueness results ... 181

B Some density results ... 185
 B.1 Approximations in BV .. 185
 B.2 A density result for $U \cap L(c)$ 191
 B.3 Local comparison functions 194

C Brief comments on steady states of generalized Newtonian
 fluids ... 199

D Notation and conventions .. 205

References ... 207

Index ... 215