Contents

Preface xv

CHAPTER 1 Stochastic Processes 1

1.1 Introduction 1
1.2 Markov Chains 2
 1.2.1 Basic ideas 2
 1.2.2 Classification of states and chains 4
1.3 Continuous-Time Markov Chains 14
 1.3.1 Sojourn time 14
 1.3.2 Transition density matrix or infinitesimal generator 15
 1.3.3 Limiting behavior: ergodicity 16
 1.3.4 Transient solution 18
 1.3.5 Alternative definition 19
1.4 Birth-and-Death Processes 23
 1.4.1 Special case: $M/M/1$ queue 25
 1.4.1 Pure birth process: Yule-Furry process 25
1.5 Poisson Process 25
 1.5.1 Properties of the Poisson process 28
 1.5.2 Generalization of the Poisson process 29
 1.5.3 Role of the Poisson process in probability models 31
1.6 Randomization: Derived Markov Chains 32
 1.6.1 Markov chain on an underlying Poisson process (or subordinated to a Poisson process) 33
CHAPTER 1

1.6.2 Equivalence of the two limiting forms 33
1.6.3 Numerical method 34

1.7 Renewal Processes 35
1.7.1 Introduction 35
1.7.2 Residual and excess lifetimes 36

1.8 Regenerative Processes 37
1.8.1 Application in queueing theory 38

1.9 Markov Renewal Processes and Semi-Markov Processes 39
Problems 41
References and Further Reading 46

CHAPTER 2

Queueing Systems: General Concepts 47

2.1 Introduction 47
2.1.1 Basic characteristics 48
2.1.2 The input or arrival pattern of customers 48
2.1.3 The pattern of service 49
2.1.4 The number of servers 49
2.1.5 The capacity of the system 49
2.1.6 The queue discipline 49

2.2 Queueing Processes 50

2.3 Notation 51

2.4 Transient and Steady-State Behavior 52

2.5 Limitations of the Steady-State Distribution 53

2.6 Some General Relationships in Queueing Theory 54

2.7 Poisson Arrival Process and Its Characteristics 59
2.7.1 PASTA: Poisson arrivals see time averages 59
2.7.2 ASTA: arrivals see time averages 62

References and Further Reading 62

CHAPTER 3

Birth-and-Death Queueing Systems:
Exponential Models 65

3.1 Introduction 65

3.2 The Simple M/M/1 Queue 65
3.2.1 Steady-state solution of M/M/1 66
3.2.2 Waiting-time distributions 68
3.2.3 The output process 72
3.2.4 Semi-Markov process analysis 75

3.3 System with Limited Waiting Space:
The M/M/1/K Model 77
3.3.1 Steady-state solution 77
3.3.2 Expected number in the system L_k 78
3.3.3 Equivalence of an M/M/1/K model with a two-stage cyclic model 80
Contents ix

3.4 Birth-and-Death Processes: Exponential Models 81
3.5 The \(M/M/\infty \) Model: Exponential Model with an Infinite Number of Servers 83
3.6 The Model \(M/M/c \) 84
 3.6.1 Steady-state distribution 84
 3.6.2 Expected number of busy and idle servers 87
 3.6.3 Waiting-time distributions 89
 3.6.4 The output process 93
3.7 The \(M/M/c/c \) System: Erlang Loss Model 95
 3.7.1 Erlang loss (blocking) formula: Recursive algorithm 99
 3.7.2 Relation between Erlang’s B and C formulas 100
3.8 Model with Finite Input Source 101
 3.8.1 Steady-state distribution: \(M/M/c//m \) \(m > c \). Engset delay model 101
 3.8.2 Engset loss model \(M/M/c//m \) \(m > c \) 106
 3.8.3 The model \(M/M/c//m \) \(m \leq c \) 109
3.9 Transient Behavior 110
 3.9.1 Introduction 110
 3.9.2 Difference-equation technique 112
 3.9.3 Method of generating function 117
 3.9.4 Busy-period analysis 119
 3.9.5 Waiting-time process: Virtual waiting time 125
3.10 Transient-State Distribution of the \(M/M/c \) Model 127
 3.10.1 Solution of the differential-difference equations 127
 3.10.2 Busy period of an \(M/M/c \) queue 133
 3.10.3 Transient-state distribution of the output of an \(M/M/c \) queue 136
3.11 Multichannel Queue with Ordered Entry 138
 3.11.1 Two-channel model with ordered entry (with finite capacity) 139
 3.11.2 The case \(M = 1, N = N \) 140
 3.11.3 Particular case: \(M = N = 1 \) (overflow system) 142
 3.11.4 Output process 144
3.12 Problems and Complements 145
3.13 References and Further Reading 159

CHAPTER 4 Non-Birth-and-Death Queueing Systems: Markovian Models 165

4.1 Introduction 165
 4.1.1 The system \(M/E_k/1 \) 165
 4.1.2 The system \(E_k/M/1 \) 170
Contents

4.2 Bulk Queues 174
 4.2.1 Markovian bulk-arrival system: $M^X/M/1$ 174
 4.2.2 Equivalence of $M^r/M/1$ and $M/E_r/1$
 systems 178
 4.2.3 Waiting-time distribution in an $M^r/M/1$
 queue 178
 4.2.4 Transient-state behavior 179
 4.2.5 The system $M^X/M/\infty$ 181

4.3 Queueing Models with Bulk (Batch) Service 185
 4.3.1 The system $M/M(a,b)/1$ 186
 4.3.2 Distribution of the waiting-time for the system
 $M/M(a,b)/1$ 190
 4.3.3 Service batch-size distribution 195

4.4 $M/M(a,b)/1$: Transient-State Distribution 196
 4.4.1 Steady-state solution 198
 4.4.2 Busy-period distribution 198

4.5 Two-Server Model: $M/M(a,b)/2$ 202
 4.5.1 Particular case: $M/M(1,b)/2$ 204

4.6 The $M/M(1,b)/c$ Model 205
 4.6.1 Steady-state results $M/M(1,b)/c$ 208

Problems and Complements 210
References and Further Reading 217

CHAPTER 5 Network of Queues 221

5.1 Network of Markovian Queues 221

5.2 Channels in Series or Tandem Queues 222
 5.2.1 Queues in series with multiple channels at each
 phase 224

5.3 Jackson Network 226

5.4 Closed Markovian Network
 (Gordon and Newell Network) 233

5.5 Cyclic Queue 236

5.6 BCMP Networks 238

5.7 Concluding Remarks 240
 5.7.1 Loss networks 241

Problems and Complements 242
References and Further Reading 249

CHAPTER 6 Non-Markovian Queueing Systems 255

6.1 Introduction 255
 6.2 Embedded-Markov-Chain Technique
 for the System with Poisson Input 256
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3</td>
<td>The $M/G/1$ Model: Pollaczek-Khinchin Formula</td>
<td>259</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Steady-state distribution of departure epoch system size</td>
<td>259</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Waiting-time distribution</td>
<td>261</td>
</tr>
<tr>
<td>6.3.3</td>
<td>General time system size distribution of an $M/G/1$ queue: supplementary variable technique</td>
<td>267</td>
</tr>
<tr>
<td>6.3.4</td>
<td>Semi-Markov process approach</td>
<td>274</td>
</tr>
<tr>
<td>6.3.5</td>
<td>Approach via martingale</td>
<td>274</td>
</tr>
<tr>
<td>6.4</td>
<td>Busy Period</td>
<td>276</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Introduction</td>
<td>276</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Busy-period distribution: Takács integral equation</td>
<td>277</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Further discussion of the busy period</td>
<td>279</td>
</tr>
<tr>
<td>6.4.4</td>
<td>Delay busy period</td>
<td>284</td>
</tr>
<tr>
<td>6.4.5</td>
<td>Delay busy period under N-policy</td>
<td>285</td>
</tr>
<tr>
<td>6.5</td>
<td>Queues with Finite Input Source: $M/G/1//N$ System</td>
<td>289</td>
</tr>
<tr>
<td>6.6</td>
<td>System with Limited Waiting Space: $M/G/1/K$ System</td>
<td>292</td>
</tr>
<tr>
<td>6.7</td>
<td>The $M^X/G/1$ Model with Bulk Arrival</td>
<td>295</td>
</tr>
<tr>
<td>6.7.1</td>
<td>The number in the system at departure epochs in steady state (Pollaczek-Khinchin formula)</td>
<td>295</td>
</tr>
<tr>
<td>6.7.2</td>
<td>Waiting-time distribution</td>
<td>295</td>
</tr>
<tr>
<td>6.7.3</td>
<td>Feedback queues</td>
<td>302</td>
</tr>
<tr>
<td>6.8</td>
<td>The $M/G(a, b)/1$ Model with General Bulk Service</td>
<td>304</td>
</tr>
<tr>
<td>6.9</td>
<td>The $G/M/1$ Model</td>
<td>306</td>
</tr>
<tr>
<td>6.9.1</td>
<td>Steady-state arrival epoch system size</td>
<td>306</td>
</tr>
<tr>
<td>6.9.2</td>
<td>General time system size in steady state</td>
<td>309</td>
</tr>
<tr>
<td>6.9.3</td>
<td>Waiting-time distribution</td>
<td>311</td>
</tr>
<tr>
<td>6.9.4</td>
<td>Expected duration of busy period and idle period</td>
<td>313</td>
</tr>
<tr>
<td>6.10</td>
<td>Multiserver Model</td>
<td>314</td>
</tr>
<tr>
<td>6.10.1</td>
<td>The $M/G/\infty$ model: transient-state distribution</td>
<td>314</td>
</tr>
<tr>
<td>6.10.2</td>
<td>The model $G/M/c$</td>
<td>319</td>
</tr>
<tr>
<td>6.10.3</td>
<td>The model $M/G/c$</td>
<td>322</td>
</tr>
<tr>
<td>6.11</td>
<td>Queues with Markovian Arrival Process</td>
<td>324</td>
</tr>
<tr>
<td></td>
<td>Problems and Complements</td>
<td>326</td>
</tr>
<tr>
<td></td>
<td>References and Further Reading</td>
<td>334</td>
</tr>
</tbody>
</table>
CHAPTER 7 Queues with General Arrival Time and Service-Time Distributions 339

7.1 The $G/G/1$ Queue with General Arrival Time and Service-Time Distributions 339

7.1.1 Lindley's integral equation 341
7.1.2 Laplace transform of W 343
7.1.3 Generalization of the Pollaczek–Khinchin transform formula 346

7.2 Mean and Variance of Waiting Time W 348

7.2.1 Mean of W (single-server queue) 348
7.2.2 Variance of W 351
7.2.3 Multiserver queues: approximation of mean waiting time 353

7.3 Queues with Batch Arrivals $G^{(x)}/G/1$ 356

7.4 The Output Process of a $G/G/1$ System 358

7.4.1 Particular case 359
7.4.2 Output process of a $G/G/c$ system 360

7.5 Some Bounds for the $G/G/1$ System 360

7.5.1 Bound for $E(I)$ 360
7.5.2 Bounds for $E(W)$ 360

Problems and Complements 368

References and Further Reading 371

CHAPTER 8 Miscellaneous Topics 375

8.1 Heavy-Traffic Approximation for Waiting-Time Distribution 375

8.1.1 Kingman's heavy-traffic approximation for a $G/G/1$ queue 375
8.1.2 Empirical extension of the $M/G/1$ heavy-traffic approximation 379
8.1.3 $G/M/c$ queue in heavy traffic 381

8.2 Brownian Motion Process 383

8.2.1 Introduction 383
8.2.2 Asymptotic queue-length distribution 386
8.2.3 Diffusion approximation for a $G/G/1$ queue 389
8.2.4 Virtual delay for the $G/G/1$ system 391
8.2.5 Approach through an absorbing barrier with instantaneous return 394
8.2.6 Diffusion approximation for a $G/G/c$ queue: state-dependent diffusion equation 395
8.2.7 Diffusion approximation for an $M/G/c$ model 396
8.2.8 Concluding remarks 397

8.3 Queueing Systems with Vacations 398
8.3.1 Introduction 398
8.3.2 Stochastic decomposition 399
8.3.3 Poisson input queue with vacations: [exhaustive-service] queue-length distribution 399
8.3.4 Poisson input queue with vacations: waiting-time distribution 404
8.3.5 $M/G/1$ system with vacations: nonexhaustive service 406
8.3.6 Limited service system: $M/G/1-V_m$ model 407
8.3.7 Gated service system: $M/G/1-V_m$ model 408
8.3.8 $M/G/1/K$ queue with multiple vacations 412
8.3.9 Mean value analysis through heuristic treatment 416

8.4 Design and Control of Queues 423

8.5 Retrial Queueing System 427
8.5.1 Retrial queues: model description 427
8.5.2 Single-server model: $M/M/1$ retrial queue 429
8.5.3 $M/G/1$ retrial queue 432
8.5.4 Multiserver models 436
8.5.5 Model with finite orbit size 439
8.5.6 Other retrial queue models 440

8.6 Emergence of a New Trend in Teletraffic Theory 441
8.6.1 Introduction 441
8.6.2 Heavy-tail distributions 442
8.6.3 $M/G/1$ with heavy-tailed service time 445
8.6.4 Pareto mixture of exponential (PME) distribution 445
8.6.5 Gamma mixture of Pareto (GMP) distribution 447
8.6.6 Beta mixture of exponential (BME) distribution 450
8.6.7 A class of heavy-tail distributions 452
8.6.8 Long-range dependence 454

Problems and Complements 455
References and Further Reading 461

Appendix 469
Index 477