Contents

Preface xi
Preface from the First Edition xv

1 Experiments on Quantization 1
 1.1. Introduction 1
 1.2. The Millikan Oil Drop Experiment 2
 1.3. The Frank–Hertz Experiment 10
 1.4. The Hydrogen Spectrum 20
 1.5. Experiment on the Hydrogen Spectrum 25
 1.6. The Spectra of Sodium and Mercury 33

2 Electrons in Solids 45
 2.1. Solid Materials and Band Structure 45
 2.2. Experiment on the Resistivity of Metals 54
 2.3. Experiment on the Hall Effect 63
 2.4. Semiconductors 71
 2.5. High T_c Superconductors 81
 2.6. References 88

3 Electronics and Data Acquisition 89
 3.1. Elements of Circuit Theory 89
 3.2. Basic Electronic Equipment 104
 3.3. Oscilloscopes and Digitizers 110
 3.4. Simple Measurements 116
3.5. Operational Amplifiers 119
3.6. Measurements of Johnson Noise 122
3.7. Chaos 133
3.8. Lock-In Detection 144
3.9. Computer Interfaces 147
3.10. References 150

4 Lasers 151
 4.1. The Principle of Laser Operation 152
 4.2. Properties of Laser Beams 156
 4.3. The HeNe Laser 159
 4.4. Measurement of the Transverse Beam Profile 164
 4.5. The Michelson Interferometer 167
 4.6. The Fabry–Perot Interferometer 172

5 Optics Experiments 179
 5.1. Introduction 179
 5.2. Diffraction from a Slit 180
 5.3. Calculation of the Diffraction Pattern 185
 5.4. Diffraction from a Circular Aperture 188
 5.5. The Diffraction Grating 192
 5.6. Fourier Optics 198
 5.7. The Faraday Effect 201
 5.8. Berry’s Phase 210
 5.9. References 214

6 High-Resolution Spectroscopy 215
 6.1. Introduction 215
 6.2. The Zeeman Effect 218
 6.3. Hyperfine Structure 228
 6.4. The Line Width 236
 6.5. The Zeeman Effect of the Green Line of 198Hg 238
 6.6. Saturation Absorption Spectroscopy of Rubidium 243
 6.7. References 250

7 Magnetic Resonance Experiments 251
 7.1. Introduction 251
 7.2. The Rate for Magnetic-Dipole Transitions 255
 7.3. Absorption of Energy by the Nuclear Moments 262
7.4. Experimental Observation of the Nuclear Magnetic Resonance of Protons 273
7.5. Electron Spin Resonance 283
7.6. References 293

8 Particle Detectors and Radioactive Decay 295
8.1. General Considerations 295
8.2. Interactions of Charged Particles and Photons with Matter 298
8.3. Gaseous Ionization Detectors; the Geiger Counter 320
8.4. The Scintillation Counter 333
8.5. Solid-State Detectors 344
8.6. Nuclear Half-Life Measurements 354
8.7. References 364

9 Scattering and Coincidence Experiments 367
9.1. Introduction 367
9.2. Compton Scattering 369
9.3. Mössbauer Effect 385
9.4. Detection of Cosmic Rays 399
9.5. \(\gamma-\gamma \) Angular Correlation Measurements 409

10 Elements from the Theory of Statistics 423
10.1. Definitions 423
10.2. Frequency Functions of One Variable 431
10.3. Estimation of Parameters and Fitting of Data 445
10.4. Errors and Their Propagation 454
10.5. The Statistics of Nuclear Counting 465
10.6. References 473

Appendices

A Students 475

B A Short Guide to MATLAB 477
 B.1. A MATLAB Review 478
 B.2. Making Fancy Plots in MATLAB 481