Alexander Vollert

A Stochastic Control Framework for Real Options in Strategic Evaluation

Birkhäuser
Boston • Basel • Berlin
Contents

Acknowledgment

1 Overview
1.1 Background and Objectives of the Study
1.2 Organization of the Study

2 Introduction to Real Options
2.1 Basic Idea
2.1.1 Why Flexibility Adds Value
2.1.2 Flexibility and Traditional Capital Budgeting Methods
2.1.3 Towards a New Investment Paradigm
2.2 Classification of Real Options
2.2.1 Management Perspective
2.2.2 Valuation Perspective
2.3 Discussion of the Real Options Approach
2.3.1 When to Use Real Options
2.3.2 Advantages of the Real Options Approach
2.3.3 Drawbacks of the Real Options Approach
2.4 Conclusions

3 Real Options and Stochastic Control
3.1 Real Option Interactions and Stochastic Control
3.2 Introduction to Impulse Control and Optimal Stopping
3.2.1 General Idea
3.2.2 Impulse Control
3.3 Impulse Control Model for Valuing Real Options
3.3.1 Problem Formulation
3.3.2 Impulse Control Verification Theorem
3.3.3 Interpretation and Extensions
3.4 Combined Impulse Control and Optimal Stopping
3.4.1 Problem Formulation
3.4.2 Combined Verification Theorem

Contents

4 Valuing Real Options in a Stochastic Control Framework 85
4.1 Equivalence of Stochastic Control and Contingent Claims Analysis 86
4.1.1 Hedging Portfolio and Fundamental Pricing Equation 86
4.1.2 Equivalent Martingale Measure 94
4.1.3 Interpretation and Conclusions 99
4.2 Contingency Structure of Option Interactions 101
4.3 Example: Timing and Intensity of Investment 117

5 Extensions: Competition and Time Delay Effects 129
5.1 Competitive Interaction 129
5.1.1 Exogenous Competition 130
5.1.2 Endogenous Competition 142
5.2 Time Delay Effects 157

6 Case Study: Flexibility in the Manufacturing Industry 169
6.1 Real Options and Volume Flexibility 170
6.2 Model 172
6.2.1 Static Project Value with Fixed Capacity 175
6.2.2 Timing and Intensity 180
6.2.3 Flexible Capacity 184
6.2.4 Timing, Intensity and Flexible Capacity 189
6.3 Numerical Solution Techniques 191
6.3.1 Finite Difference Methods 193
6.3.2 General Numerical Solution Procedure 199
6.4 Numerical Analysis 200
6.5 Simulation Results 218

7 Conclusions and Extensions 241

Bibliography 245

Index 263