Contents

Preface ix

1 Bifurcation and degenerate decomposition in multiple time scale dynamical systems 1
John Guckenheimer
1.1 Definitions and background 4
1.2 Slow-fast decompositions 8
1.3 Degenerate decomposition and bifurcation 10
1.4 The forced Van der Pol equation 13
Acknowledgment 18
References 19

2 Many-body quantum mechanics 21
Robert S MacKay
2.1 Signs of nonlinearity in quantum mechanics 24
2.2 Discrete breathers 27
2.3 Experimental evidence for quantum discrete breathers 33
2.4 Towards a mathematical theory of quantum discrete breathers 35
2.5 Obstructions to the theory 39
2.6 A proposed solution 41
2.7 A tentative application to 4-methyl pyridine 47
2.8 Conclusion 51
Acknowledgments 52
References 52

3 Unfolding complexity: hereditary dynamical systems—new bifurcation schemes and high dimensional chaos 55
Uwe an der Heiden
3.1 Hereditary systems 55
3.2 Difference equations with continuous argument: idealized turbulence 60
3.3 First-order difference-differential equations: a singular perturbation problem with bifurcation gaps 61
3.4 Prime number dynamics of a retarded difference equation 64
Contents

3.5 Second-order non-smooth difference-differential equations 67
3.6 Outlook 70
 Acknowledgment 70
 References 70

4 Creating stability out of instability 73
Christopher K R T Jones
4.1 Nonlinear optical fibres 74
4.2 Can two unstable waves make a stable pulse? 84
4.3 Some predictions, suggestions and questions 88
 References 89

5 Signal or noise? A nonlinear dynamics approach to spatio-temporal communication 91
Gregory D Van Wiggeren, Jordi Garcia-Ojalvo and Rajarshi Roy
5.1 Communication with dynamically fluctuating states of light polarization 94
5.2 Spatio-temporal communication with synchronized optical chaos 105
5.3 Conclusions 112
 Acknowledgments 113
 References 113

6 Outstanding problems in the theory of pattern formation 117
Edgar Knobloch
6.1 Pattern selection on lattices 128
6.2 Imperfection sensitivity 132
6.3 Coupled Ginzburg–Landau equations 138
6.4 The nearly-inviscid Faraday System 141
6.5 Nonlinear waves in extended systems with broken reflection symmetry 149
6.6 Summary and conclusions 158
 Acknowledgments 159
 References 159

7 Is chaos relevant to fluid mechanics? 167
Tom Mullin
7.1 Taylor–Couette flow 167
7.2 Preliminary observations 170
7.3 Symmetry considerations 173
7.4 Codimension-two bifurcations 174
7.5 Imperfect gluing bifurcations 180
7.6 Conclusion 182
 Acknowledgments 183
 References 184
8 Time-reversed acoustics and chaos

Mathias Fink

- 8.1 Time-reversal mirrors 188
- 8.2 Time-reversal experiments 192
- 8.3 Time reversal in chaotic cavities 198
- 8.4 Conclusion 206
 - Acknowledgments 206
 - References 206

9 Reduction methods applied to non-locally coupled oscillator systems

Yoshiki Kuramoto

- 9.1 When coupling non-locality becomes crucial 211
- 9.2 Rotating spiral waves without phase singularity 213
- 9.3 Simpler case: coexistence of coherent and incoherent domains 218
- 9.4 Concluding remarks 224
 - References 225

10 A prime number of prime questions about vortex dynamics in nonlinear media

Art Winfree

- 10.1 Stable organizing centres 230
- 10.2 Persistent organizing centres 248
- 10.3 Igniting resistance to curvature-induced contraction 251
- 10.4 Dynamic C: synchronization 258
- 10.5 Ball-park estimation of pertinent quantities 260
- 10.6 Passing in silence from 1994 to 2002 262
 - Acknowledgments 264
 - Addendum while in press 264
 - References 264

11 Spontaneous pattern formation in primary visual cortex

Paul C Bressloff and Jack D Cowan

- 11.1 The Turing mechanism and its role in cooperative cortical dynamics 274
- 11.2 A continuum model of V1 and its intrinsic circuitry 281
- 11.3 Orientation tuning and O(2) symmetry 285
- 11.4 Amplitude equation for interacting hypercolumns 288
- 11.5 Cortical pattern formation and E(2) symmetry 292
- 11.6 Spatial frequency tuning and SO(3) symmetry 307
- 11.7 Future directions 316
 - References 317
Contents

12 Models for pattern formation in development

Bard Ermentrout and Remus Osan

12.1 Competition

12.2 Spatial scales

12.3 Orientation maps and feature maps

12.4 Kohonen maps and abstract feature models

12.5 Conclusions

References

13 Spatio-temporal nonlinear dynamics: a new beginning

William L. Ditto

13.1 Fibrillation of the heart

13.2 Neuro computing

13.3 Where do we go from here?

Acknowledgments

References

Author index