Electronic and Optoelectronic Properties of Semiconductor Structures

Jasprit Singh

University of Michigan, Ann Arbor
CONTENTS

PREFACE

INTRODUCTION

1.1 Survey of Advances in Semiconductor Physics

1.2 Physics Behind Semiconductors

1.3 Role of This Book

1 STRUCTURAL PROPERTIES OF SEMICONDUCTORS

1.1 Introduction

1.2 Crystal Growth
 1.2.1 Bulk Crystal Growth
 1.2.2 Epitaxial Crystal Growth
 1.2.3 Epitaxial Regrowth

1.3 Crystal Structure
 1.3.1 Basic Lattice Types
 1.3.2 Basic Crystal Structures
 1.3.3 Notation to Denote Planes and Points in a Lattice: Miller Indices
 1.3.4 Artificial Structures: Superlattices and Quantum Wells
 1.3.5 Surfaces: Ideal Versus Real
 1.3.6 Interfaces
 1.3.7 Defects in Semiconductors
2 SEMICONDUCTOR BANDSTRUCTURE

2.1 INTRODUCTION

2.2 BLOCH THEOREM AND CRYSTAL MOMENTUM
2.2.1 Significance of the k-vector

2.3 METALS, INSULATORS, AND SEMICONDUCTORS

2.4 TIGHT BINDING METHOD
2.4.1 Bandstructure Arising From a Single Atomic s-Level
2.4.2 Bandstructure of Semiconductors

2.5 SPIN-ORBIT COUPLING
2.5.1 Symmetry of Bandedge States

2.6 ORTHOGONALIZED PLANE WAVE METHOD

2.7 PSEUDOPOTENTIAL METHOD

2.8 k • p METHOD

2.9 SELECTED BANDSTRUCTURES

2.10 MOBILE CARRIERS: INTRINSIC CARRIERS

2.11 DOPING: DONORS AND ACCEPTORS
2.11.1 Carriers in Doped Semiconductors
2.11.2 Mobile Carrier Density and Carrier Freezeout
2.11.3 Equilibrium Density of Carriers in Doped Semiconductors
2.11.4 Heavily Doped Semiconductors

2.12 TECHNOLOGY CHALLENGES

2.13 PROBLEMS

2.14 REFERENCES
3 BANDSTRUCTURE MODIFICATIONS

3.1 BANDSTRUCTURE OF SEMICONDUCTOR ALLOYS
3.1.1 GaAs/AlAs Alloy 113
3.1.2 InAs/GaAs Alloy 113
3.1.3 HgTe/CdTe Alloy 116
3.1.4 Si/Ge Alloy 117
3.1.5 InN, GaN, AlN System 117

3.2 BANDSTRUCTURE MODIFICATIONS BY HETEROSTRUCTURES 118
3.2.1 Bandstructure in Quantum Wells 119
3.2.2 Valence Bandstructure in Quantum Wells 123

3.3 SUB-2-DIMENSIONAL SYSTEMS 124

3.4 STRAIN AND DEFORMATION POTENTIAL THEORY 129
3.4.1 Strained Quantum Wells 137
3.4.2 Self-Assembled Quantum Dots 140

3.5 POLAR HETEROSTRUCTURES 142

3.6 TECHNOLOGY ISSUES 145

3.7 PROBLEMS 145

3.8 REFERENCES 149

4 TRANSPORT: GENERAL FORMALISM

4.1 INTRODUCTION 152

4.2 BOLTZMANN TRANSPORT EQUATION 153
4.2.1 Diffusion-Induced Evolution of $f_k(r)$ 155
4.2.2 External Field-Induced Evolution of $f_k(r)$ 156
4.2.3 Scattering-Induced Evolution of $f_k(r)$ 156

4.3 AVERAGING PROCEDURES 163

4.4 TRANSPORT IN A WEAK MAGNETIC FIELD: HALL MOBILITY 165

4.5 SOLUTION OF THE BOLTZMANN TRANSPORT EQUATION 168
4.5.1 Iterative Approach 168

4.6 BALANCE EQUATION: TRANSPORT PARAMETERS 169

4.7 TECHNOLOGY ISSUES 175

4.8 PROBLEMS 176

4.9 REFERENCES 177
7 VELOCITY-FIELD RELATIONS IN SEMICONDUCTORS 260

7.1 LOW FIELD TRANSPORT 261
7.2 HIGH FIELD TRANSPORT: MONTE CARLO SIMULATION 264
 7.2.1 Simulation of Probability Functions by Random Numbers 265
 7.2.2 Injection of Carriers 266
 7.2.3 Free Flight 269
 7.2.4 Scattering Times 269
 7.2.5 Nature of the Scattering Event 271
 7.2.6 Energy and Momentum After Scattering 272
7.3 STEADY STATE AND TRANSIENT TRANSPORT 288
 7.3.1 GaAs, Steady State 288
 7.3.2 GaAs, Transient Behavior 290
 7.3.3 High Field Electron Transport in Si 291
7.4 BALANCE EQUATION APPROACH TO HIGH FIELD TRANSPORT 292
7.5 IMPACT IONIZATION IN SEMICONDUCTORS 295
7.6 TRANSPORT IN QUANTUM WELLS 296
7.7 TRANSPORT IN QUANTUM WIRES AND DOTS 303
7.8 TECHNOLOGY ISSUES 305
7.9 PROBLEMS 306
7.10 REFERENCES 308

8 COHERENCE, DISORDER, AND MESOSCOPIC SYSTEMS 312

8.1 INTRODUCTION 312
8.2 ZENER-BLOCH OSCILLATIONS 313
8.3 RESONANT TUNNELING 316
9 OPTICAL PROPERTIES OF SEMICONDUCTORS 345

9.1 INTRODUCTION 345

9.2 MAXWELL EQUATIONS AND VECTOR POTENTIAL 346

9.3 ELECTRONS IN AN ELECTROMAGNETIC FIELD 351

9.4 INTERBAND TRANSITIONS 358
9.4.1 Interband Transitions in Bulk Semiconductors 358
9.4.2 Interband Transitions in Quantum Wells 361

9.5 INDIRECT INTERBAND TRANSITIONS 364

9.6 INTRABAND TRANSITIONS 370
9.6.1 Intraband Transitions in Bulk Semiconductors 371
9.6.2 Intraband Transitions in Quantum Wells 371
9.6.3 Interband Transitions in Quantum Dots 374

9.7 CHARGE INJECTION AND RADIATIVE RECOMBINATION 376
9.7.1 Spontaneous Emission Rate 376
9.7.2 Gain in a Semiconductor 378

9.8 NONRADIATIVE RECOMBINATION 381
9.8.1 Charge Injection: Nonradiative Effects 381
9.8.2 Nonradiative Recombination: Auger Processes 382

9.9 SEMICONDUCTOR LIGHT EMITTERS 385
9.9.1 Light Emitting Diode 386
9.9.2 Laser Diode 387

9.10 CHARGE INJECTION AND BANDGAP RENORMALIZATION 395

9.11 TECHNOLOGY ISSUES 396
10 EXCITONIC EFFECTS AND MODULATION OF OPTICAL PROPERTIES

10.1 INTRODUCTION

10.2 EXCITONIC STATES IN SEMICONDUCTORS

10.3 OPTICAL PROPERTIES WITH INCLUSION OF EXCITONIC EFFECTS

10.4 EXCITONIC STATES IN QUANTUM WELLS

10.5 EXCITONIC ABSORPTION IN QUANTUM WELLS

10.6 EXCITON BROADENING EFFECTS

10.7 MODULATION OF OPTICAL PROPERTIES

10.7.1 Electro–Optic Effect

10.7.2 Modulation of Excitonic Transitions:
Quantum Confined Stark Effect

10.7.3 Optical Effects in Polar Heterostructures

10.8 EXCITON QUENCHING

10.9 TECHNOLOGY ISSUES

10.10 PROBLEMS

10.11 REFERENCES

11 SEMICONDUCTORS IN MAGNETIC FIELDS

11.1 SEMICLASSICAL DYNAMICS OF ELECTRONS
IN A MAGNETIC FIELD

11.1.1 Semiclassical Theory of Magnetotransport

11.2 QUANTUM MECHANICAL APPROACH TO ELECTRONS
IN A MAGNETIC FIELD

11.3 AHARNOV-BOHM EFFECT

11.3.1 Quantum Hall Effect

11.4 MAGNETO-OPTICS IN LANDAU LEVELS

11.5 EXCITONS IN MAGNETIC FIELD
A

STRAIN IN SEMICONDUCTORS

A.1 ELASTIC STRAIN 478
A.2 ELASTIC CONSTANTS 480

B

EXPERIMENTAL TECHNIQUES

B.1 HIGH RESOLUTION X-RAY DIFFRACTION 484
B.1.1 Double Crystal Diffraction 487
B.2 DRIFT MOBILITY AND HALL MOBILITY 487
B.2.1 Haynes-Schockley Experiment 488
B.2.2 Hall Effect for Carrier Density and Hall Mobility 490
B.3 PHOTOLUMINESCENCE (PL) AND EXCITATION PHOTOLUMINESCENCE (PLE) 490
B.4 OPTICAL PUMP PROBE EXPERIMENTS 494

C

QUANTUM MECHANICS: USEFUL CONCEPTS 498

C.1 DENSITY OF STATES 499
C.2 STATIONARY PERTURBATION THEORY 504
C.2.1 Nondegenerate Case 504
C.2.2 Degenerate Case 507
C.3 TIME DEPENDENT PERTURBATION THEORY AND FERMI GOLDEN RULE 509
C.4 BOUND STATE PROBLEM: MATRIX TECHNIQUES 511

D

IMPORTANT PROPERTIES OF SEMICONDUCTORS 514

INDEX 527