Contents

Foreword by Peter Freeman xv
Foreword by Bran Selic xvii
Preface xix

PART I UML NOTATION, DESIGN CONCEPTS, TECHNOLOGY, LIFE CYCLES, AND METHODS 1
1 Introduction ... 3
 1.1 Object-Oriented Methods and the Unified Modeling Language 4
 1.2 Method and Notation ... 5
 1.3 Concurrent Applications 6
 1.4 Real-Time Systems and Applications 8
 1.5 Distributed Systems and Applications 10
 1.6 Summary .. 11

2 Overview of UML Notation 13
 2.1 UML Diagrams .. 13
 2.2 Use Case Diagrams ... 14
 2.3 UML Notation for Classes and Objects 14
 2.4 Class Diagrams ... 15
 2.5 Interaction Diagrams 17
 2.6 Statechart Diagrams 19
 2.7 Packages .. 20
 2.8 Concurrent Collaboration Diagrams 21
CONTENTS

2.9 Deployment Diagrams .. 23
2.10 UML Extension Mechanisms 24
2.11 The UML as a Standard .. 25
2.12 Summary .. 26

3 Software Design and Architecture Concepts 27
3.1 Object-Oriented Concepts .. 27
3.2 Information Hiding ... 30
3.3 Inheritance ... 36
3.4 Active and Passive Objects 37
3.5 Concurrent Processing .. 38
3.6 Cooperation between Concurrent Tasks 40
3.7 Information Hiding Applied to Access Synchronization ... 49
3.8 Monitors ... 51
3.9 Design Patterns .. 53
3.10 Software Architecture and Component-Based Systems 55
3.11 Summary .. 56

4 Concurrent and Distributed System Technology 57
4.1 Environments for Concurrent Processing 57
4.2 Runtime Support for Multiprogramming and Multiprocessing Environments 60
4.3 Task Scheduling .. 63
4.4 Operating System Input/Output Considerations 65
4.5 Client/Server and Distributed System Technology 68
4.6 World Wide Web Technology 73
4.7 Distributed Operating System Services 75
4.8 Middleware .. 78
4.9 Common Object Request Broker Architecture (CORBA) .. 81
4.10 Other Component Technologies 85
4.11 Transaction Processing Systems 86
4.12 Summary .. 88

5 Software Life Cycles and Methods 91
5.1 Software Life Cycle Approaches 91
5.2 Design Verification and Validation 98
5.3 Software Testing ... 99
5.4 Evolution of Software Design Methods 101
5.5 Evolution of Object-Oriented Analysis and Design Methods

103

5.6 Survey of Concurrent and Real-Time Design Methods

105

5.7 Summary

106

PART II COMET: CONCURRENT OBJECT MODELING AND ARCHITECTURAL DESIGN WITH UML

107

6 Overview of COMET

109

6.1 COMET Object-Oriented Software Life Cycle

109

6.2 Comparison of the COMET Life Cycle with Other Software Processes

112

6.3 Requirements, Analysis, and Design Models

113

6.4 The COMET in a Nutshell

115

6.5 Summary

118

7 Use Case Modeling

119

7.1 Use Cases

119

7.2 Actors

120

7.3 Actors, Roles, and Users

123

7.4 Identifying Use Cases

123

7.5 Documenting Use Cases in the Use Case Model

124

7.6 Examples of Use Cases

125

7.7 Use Case Relationships

130

7.8 Use Case Packages

134

7.9 Summary

135

8 Static Modeling

137

8.1 Associations between Classes

137

8.2 Composition and Aggregation Hierarchies

145

8.3 Generalization/Specialization Hierarchy

147

8.4 Constraints

149

8.5 Static Modeling and the UML

149

8.6 Static Modeling of the System Context

152

8.7 Static Modeling of Entity Classes

155

8.8 Summary

157

9 Object and Class Structuring

159

9.1 Object Structuring Criteria

160

9.2 Categorization of Application Classes

160
12 Software Architecture Design .. 253
 12.1 Software Architectural Styles 253
 12.2 System Decomposition Issues 257
 12.3 Guidelines for Determining Subsystems 259
 12.4 Consolidated Collaboration Diagrams 260
 12.5 Subsystem Software Architecture 261
 12.6 Separation of Concerns in Subsystem Design 261
 12.7 Subsystem Structuring Criteria 265
 12.8 Examples of Subsystem Decomposition 269
 12.9 Static Modeling at the Design Level 270
 12.10 Summary ... 274

13 Architectural Design of Distributed Applications 275
 13.1 Configurable Architectures and Software Components 276
 13.2 Steps in Designing Distributed Applications 276
 13.3 System Decomposition .. 277
 13.4 Designing Subsystem Interfaces 283
 13.5 Transaction Management 292
 13.6 Design of Server Subsystems 295
 13.7 Distribution of Data ... 300
 13.8 System Configuration .. 301
 13.9 Summary ... 303

14 Task Structuring .. 305
 14.1 Concurrent Task Structuring Issues 306
 14.2 Task Structuring Categories 307
 14.3 I/O Task Structuring Criteria 308
 14.4 Internal Task Structuring Criteria 317
 14.5 Task Priority Criteria .. 324
 14.6 Task Clustering Criteria 325
 14.7 Design Restructuring by Using Task Inversion 337
 14.8 Developing the Task Architecture 341
 14.9 Task Communication and Synchronization 345
 14.10 Task Behavior Specifications 354
 14.11 Summary ... 359
15 Class Design ... 361
 15.1 Designing Information Hiding Classes 361
 15.2 Designing Class Operations 362
 15.3 Data Abstraction Classes 367
 15.4 Device Interface Classes 369
 15.5 State-Dependent Classes 375
 15.6 Algorithm Hiding Classes 378
 15.7 User Interface Classes 378
 15.8 Business Logic Classes 381
 15.9 Database Wrapper Classes 383
 15.10 Software Decision Classes 384
 15.11 Inheritance in Design 386
 15.12 Examples of Inheritance 387
 15.13 Class Interface Specifications 393
 15.14 Summary .. 396

16 Detailed Software Design .. 397
 16.1 Design of Composite Tasks 397
 16.2 Synchronization of Access to Classes 405
 16.3 Designing Connectors for Inter-Task Communication 414
 16.4 Task Event Sequencing Logic 420
 16.5 Summary .. 421

17 Performance Analysis of Concurrent Real-Time Software Designs 423
 17.1 Real-Time Scheduling Theory 423
 17.2 Advanced Real-Time Scheduling Theory 431
 17.3 Performance Analysis Using Event Sequence Analysis 436
 17.4 Performance Analysis Using Real-Time Scheduling Theory and Event Sequence Analysis 437
 17.5 Example of Performance Analysis Using Event Sequence Analysis 438
 17.6 Example of Performance Analysis Using Real-Time Scheduling Theory 442
 17.7 Example of Performance Analysis Using Real-Time Scheduling Theory and Event Sequence Analysis 444
 17.8 Design Restructuring 452
 17.9 Estimation and Measurement of Performance Parameters 453
 17.10 Summary .. 454
Part III Case Studies in Concurrent, Distributed, and Real-Time Application Design

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>Elevator Control System Case Study</td>
<td>18.1 Problem Description, 18.2 Use Case Model, 18.3 Static Model of the Problem Domain, 18.4 Object Structuring, 18.5 Dynamic Model, 18.6 Statechart Model, 18.7 Consolidation of Collaboration Diagrams, 18.8 Subsystem Structuring, 18.9 Structuring System into Tasks, 18.10 Design of Distributed Elevator Control System, 18.11 Design of Information Hiding Classes, 18.12 Developing Detailed Software Design, 18.13 Target System Configuration, 18.14 Performance Analysis of Non-Distributed Elevator Control System, 18.15 Performance Analysis of Distributed Elevator Control System</td>
</tr>
<tr>
<td>20</td>
<td>Cruise Control and Monitoring System Case Study</td>
<td>20.1 Problem Description</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>20.2</td>
<td>Use Case Model</td>
<td>597</td>
</tr>
<tr>
<td>20.3</td>
<td>Use Case Descriptions</td>
<td>600</td>
</tr>
<tr>
<td>20.4</td>
<td>Problem Domain Static Modeling</td>
<td>605</td>
</tr>
<tr>
<td>20.5</td>
<td>Dynamic Modeling</td>
<td>608</td>
</tr>
<tr>
<td>20.6</td>
<td>Subsystem Structuring</td>
<td>623</td>
</tr>
<tr>
<td>20.7</td>
<td>Refined Static Modeling</td>
<td>632</td>
</tr>
<tr>
<td>20.8</td>
<td>Structuring the System into Tasks</td>
<td>635</td>
</tr>
<tr>
<td>20.9</td>
<td>Information Hiding Class Design</td>
<td>657</td>
</tr>
<tr>
<td>20.10</td>
<td>Developing Detailed Software Design</td>
<td>665</td>
</tr>
<tr>
<td>20.11</td>
<td>Software Architecture of Distributed Automobile System</td>
<td>671</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Distributed Factory Automation System Case Study</td>
<td>673</td>
</tr>
<tr>
<td>21.1</td>
<td>Problem Description</td>
<td>673</td>
</tr>
<tr>
<td>21.2</td>
<td>Use Case Model</td>
<td>675</td>
</tr>
<tr>
<td>21.3</td>
<td>Conceptual Static Model of the Problem Domain</td>
<td>678</td>
</tr>
<tr>
<td>21.4</td>
<td>Object Structuring</td>
<td>680</td>
</tr>
<tr>
<td>21.5</td>
<td>Dynamic Model</td>
<td>682</td>
</tr>
<tr>
<td>21.6</td>
<td>Subsystem Structuring</td>
<td>698</td>
</tr>
<tr>
<td>21.7</td>
<td>Distributed Software Architecture</td>
<td>702</td>
</tr>
<tr>
<td>21.8</td>
<td>System Configuration</td>
<td>710</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>Electronic Commerce System Case Study</td>
<td>713</td>
</tr>
<tr>
<td>22.1</td>
<td>Electronic Commerce Problem</td>
<td>713</td>
</tr>
<tr>
<td>22.2</td>
<td>Use Case Model</td>
<td>714</td>
</tr>
<tr>
<td>22.3</td>
<td>Agent Support for Electronic Commerce System</td>
<td>715</td>
</tr>
<tr>
<td>22.4</td>
<td>Object Broker Support for Electronic Commerce System</td>
<td>717</td>
</tr>
<tr>
<td>22.5</td>
<td>Static Modeling of the Problem Domain</td>
<td>718</td>
</tr>
<tr>
<td>22.6</td>
<td>Collaboration Model</td>
<td>719</td>
</tr>
<tr>
<td>22.7</td>
<td>Distributed Software Architecture</td>
<td>728</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A</td>
<td>Conventions and Alternative Notations.</td>
<td>737</td>
</tr>
<tr>
<td>A.1</td>
<td>Conventions Used in This Book</td>
<td>737</td>
</tr>
<tr>
<td>A.2</td>
<td>Alternative Notation for Stereotypes</td>
<td>739</td>
</tr>
<tr>
<td>A.3</td>
<td>Alternative Notation for Active Objects</td>
<td>740</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glossary</td>
<td></td>
<td>743</td>
</tr>
<tr>
<td>Bibliography</td>
<td></td>
<td>757</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>767</td>
</tr>
</tbody>
</table>