6.2. CONTROL OF THE WORKING PROCESS 33
6.3. TRAINING REQUIREMENTS FOR CFD USERS 35

7. CODE ERRORS 37

7.1. GUIDELINES FOR THE CODE DEVELOPER AND VENDOR 37
7.2. GUIDELINES FOR THE CODE USER 37

8. VALIDATION AND SENSITIVITY TESTS OF CFD MODELS 39

8.1. SELECTION OF TEST CASES FOR VALIDATION 39
8.2. DESIGN AND USE OF SENSITIVITY TESTS 40

9. EXAMPLES OF APPLICATION OF BEST PRACTICE GUIDELINES 41

9.1. INTRODUCTION TO THE TEST CASES 41
9.2. TEST CASE A: 2-D TRANSIENT SCALAR BUBBLE CONVECTING AT 45 DEGREES 41
9.3. TEST CASE B: T-JUNCTION BETWEEN MAIN AND AUXILIARY PIPE 43
9.4. TEST CASE C: NATURAL CONVECTION FLOW IN A SQUARE CAVITY 47
9.5. TEST CASE D: SUDDEN PIPE EXPANSION 51
9.6. TEST CASE E: TRANSONIC AIRFOIL RAE2822 56
9.7. TEST CASE F: ENGINE VALVE 59
9.8. TEST CASE G: LOW SPEED CENTRIFUGAL COMPRESSOR (LSCC) 65
9.9. TEST CASE H: TURBULENT FLOW IN A MODEL OUTLET PLENUM 71

10. SUGGESTIONS AND NEED FOR FURTHER WORK 77

10.1. REVISION OF BEST PRACTICE GUIDELINES 77
10.2. EXTENSION OF THE BEST PRACTICE GUIDELINES 77
10.3. APPLICATION PROCEDURES 77

11. CHECKLIST OF BEST PRACTICE ADVICE FOR INDUSTRIAL CFD 78

11.1. GUIDELINES ON THE TRAINING OF CFD USERS 78
11.2. GUIDELINES ON PROBLEM DEFINITION 78
11.3. GUIDELINES ON SOLUTION STRATEGY 78
11.4. GUIDELINES ON GLOBAL SOLUTION ALGORITHM 79
11.5. GUIDELINES ON VALIDATION OF MODELS 79
11.6. GUIDELINES ON TURBULENCE MODELLING 80
11.7. GUIDELINES ON DEFINITION OF GEOMETRY 82
11.8. GUIDELINES ON GRIDS AND GRID DESIGN 82
11.9. GUIDELINES ON BOUNDARY CONDITIONS 83
11.10. GUIDELINES ON THE SOLUTION OF DISCRETISED EQUATIONS USING A CFD CODE 86
11.11. GUIDELINES ON ASSESSMENT OF ERRORS 88
11.12. GUIDELINES ON INTERPRETATION 89
11.13. GUIDELINES ON DOCUMENTATION 89
11.14. GUIDELINES ON COMMUNICATION WITH CODE DEVELOPER 89

12. ACKNOWLEDGEMENTS 91

13. REFERENCES 92