Subjective and Objective Bayesian Statistics
Principles, Models, and Applications
Second Edition

S. JAMES PRESS
with contributions by
SIDDHARTHA CHIB
MERLISE CLYDE
GEORGE WOODWORTH
ALAN ZASLAVSKY

WILEY-INTERSCIENCE
A John Wiley & Sons, Inc., Publication
CONTENTS

<table>
<thead>
<tr>
<th>Preface</th>
<th>xxvi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface to the First Edition</td>
<td>xxv</td>
</tr>
<tr>
<td>A Bayesian Hall of Fame</td>
<td>xxix</td>
</tr>
</tbody>
</table>

PART I. FOUNDATIONS AND PRINCIPLES

1. **Background**
 1.1 Rationale for Bayesian Inference and Preliminary Views of Bayes’ Theorem, 3
 1.2 Example: Observing a Desired Experimental Effect, 8
 1.3 Thomas Bayes, 11
 1.4 Brief Descriptions of the Chapters, 13
 Summary, 15
 Exercises, 15
 Further Reading, 16

2. **A Bayesian Perspective on Probability**
 2.1 Introduction, 17
 2.2 Types of Probability, 18
 2.2.1 Axiom Systems, 18
 2.2.2 Frequency and Long-Run Probability, 19
 2.2.3 Logical Probability, 20
 2.2.4 Kolmogorov Axiom System of Frequency Probability, 20
2.2.5 Savage System of Axioms of Subjective Probability, 21
2.2.6 Rényi Axiom System of Probability, 22
2.3 Coherence, 24
 2.3.1 Example of Incoherence, 24
2.4 Operationalizing Subjective Probability Beliefs, 25
 2.4.1 Example of Subjective Probability Definition and Operationalization, 26
2.5 Calibration of Probability Assessors, 26
2.6 Comparing Probability Definitions, 27
 Summary, 28
Complement to Chapter 2: The Axiomatic Foundation of Decision making of L. J. Savage, 29
Utility Functions, 30
Exercises, 30
Further Reading, 31

3. The Likelihood Function 34
 3.1 Introduction, 34
 3.2 Likelihood Function, 34
 3.3 Likelihood Principle, 35
 3.4 Likelihood Principle and Conditioning, 36
 3.5 Likelihood and Bayesian Inference, 37
 3.6 Development of the Likelihood Function Using Histograms and Other Graphical Methods, 38
 Summary, 39
 Exercises, 39
 Further Reading, 40

4. Bayes' Theorem 41
 4.1 Introduction, 41
 4.2 General Form of Bayes' Theorem for Events, 41
 4.2.1 Bayes' Theorem for Complementary Events, 42
 4.2.2 Prior Probabilities, 42
 4.2.3 Posterior Probabilities, 42
 4.2.4 Odds Ratios, 42
 Example 4.1 Bayes' Theorem for Events: DNA Fingerprinting, 43
 4.3 Bayes' Theorem for Discrete Data and Discrete Parameter, 45
 4.3.1 Interpretation of Bayes' Theorem for Discrete Data and Discrete Parameter, 45
Example 4.2 Quality Control in Manufacturing: Discrete Data and Discrete Parameter (Inference About a Proportion), 46

4.3.2 Bayes' Theorem for Discrete Data and Discrete Models, 48

4.4 Bayes' Theorem for Continuous Data and Discrete Parameter, 48

4.4.1 Interpretation of Bayes' Theorem for Continuous Data and Discrete Parameter, 48

Example 4.3 Inferring the Section of a Class from which a Student was Selected: Continuous Data and Discrete Parameter (Choosing from a Discrete Set of Models), 49

4.5 Bayes' Theorem for Discrete Data and Continuous Parameter, 50

Example 4.4 Quality Control in Manufacturing: Discrete Data and Continuous Parameter, 50

4.6 Bayes' Theorem for Continuous Data and Continuous Parameter, 53

Example 4.5 Normal Data: Unknown Mean, Known Variance, 54

Example 4.6 Normal Data: Unknown Mean, Unknown Variance, 58

Summary, 63

Exercises, 63

Further Reading, 66

Complement to Chapter 4: Heights of the Standard Normal Density, 66

5. Prior Distributions 73

5.1 Introduction, 70

5.2 Objective and Subjective Prior Distributions, 70

5.2.1 Objective Prior Distributions, 70

Public Policy Priors, 71

Principle of Insufficient Reason (Laplace), 71

5.2.2 Weighing the Use of Objective Prior Distributions, 72

Advantages, 72

Disadvantages, 73

5.2.3 Weighing the Use of Subjective Prior Distributions, 74

Advantages, 74

Example 5.1, 74

Example 5.2, 74

Disadvantages, 75

5.3 (Univariate) Prior Distributions for a Single Parameter, 75

5.3.1 Vague (Indifference, Default, Objective) Priors, 76

Vague Prior Density for Parameter on (−∞, ∞), 78

Vague Prior Density for Parameter on (0, ∞), 78

5.3.2 Families of Subjective Prior Distributions, 79

A. Natural Conjugate Families of Prior Distributions, 79

Example 5.3 A Natural Conjugate Prior: Binomial Data, 80
CONTENTS

B. Exponential Power Family (EPF) of Prior Distributions, 81
C. Mixture Prior Distribution Families, 82
 Example 5.4 (Binomial), 82
5.3.3 Data-Based Prior Distributions, 84
 A. Historical Priors, 84
 B. Sample Splitting Priors, 84
5.3.4 g-Prior Distributions, 85
5.3.5 Stable Estimation Prior Distributions, 85
5.3.6 Assessing Fractiles of Your Subjective Prior Probability
 Distribution, 86
 Assessment Steps, 86
5.4 Prior Distributions for Vector and Matrix Parameters, 86
 5.4.1 Vague Prior Distributions for Parameters on $(-\infty, \infty)$, 86
 5.4.2 Vague Prior Distributions for Parameters on $(0, \infty)$, 87
 5.4.3 Jeffreys' Invariant Prior Distribution: Objective Bayesian
 Inference in the Normal Distribution, 88
 Example 5.5 Univariate Normal Data (Both Parameters
 Unknown), 89
 A. Vague Prior Density, 89
 B. Jeffrey' Prior Density, 91
 Example 5.6 Multivariate Normal Data (Both Parameters
 Unknown), 92
 5.4.4 Assessment of a Subjective Prior Distribution for a Group, 94
 Multivariate Subjective Assessment for a Group, 94
 Assessment Overview for a Group, 95
 Model for a Group, 95
 Multivariate Density Assessment for a Group, 95
 Normal Density Kernel, 96
 Summary of Group Assessment Approach, 97
 Empirical Application of Group Assessment: Probability of
 Nuclear War in the 1980s, 97
 Consistency of Response, 99
 Implications, 99
 Histogram, 102
 Smoothed Prior Density (Fitted), 102
 Qualitative Data Provided by Expert Panelists (Qualitative
 Controlled Feedback: Content Analysis, Ethnography), 103
 Psychological Factors Relating to Subjective Probability
 Assessments for Group Members (or Individuals), 105
 Biases, 106
 Conclusions Regarding Psychological Factors, 106
 Summary of Group Prior Distribution Assessment, 106
 Posterior Distribution for Probability of Nuclear War, 106
 5.4.5 Assessing Hyperparameters of Multiparameter Subjective Prior
 Distributions, 107
Maximum Entropy (Maxent) Prior Distributions (Minimum Information Priors), 108

5.5 Data-Mining Priors, 108
5.6 Wrong Priors, 110
Summary, 110
Exercises, 111
Further Reading, 113

PART II. NUMERICAL IMPLEMENTATION OF THE BAYESIAN PARADIGM

6. Markov Chain Monte Carlo Methods
Siddhartha Chib

6.1 Introduction, 119
6.2 Metropolis–Hastings (M–H) Algorithm, 121
 6.2.1 Example: Binary Response Data, 123
 Random Walk Proposal Density, 127
 Tailored Proposal Density, 128
6.3 Multiple-Block M–H Algorithm, 130
 6.3.1 Gibbs Sampling Algorithm, 132
6.4 Some Techniques Useful in MCMC Sampling, 135
 6.4.1 Data Augmentation, 136
 6.4.2 Method of Composition, 137
 6.4.3 Reduced Blocking, 138
 6.4.4 Rao–Blackwellization, 139
6.5 Examples, 140
 6.5.1 Binary Response Data (Continued), 140
 6.5.2 Hierarchical Model for Clustered Data, 142
6.6 Comparing Models Using MCMC Methods, 147
Summary, 148
Exercises, 149
Further Reading, 151

Complement A to Chapter 6: The WinBUGS Computer Program,
 by George Woodworth, 153
Introduction, 154
The WinBUGS Programming Environment, 155
 Specifying the Model, 155
 Example 6.1 Inference on a Single Proportion, 155
Simple Convergence Diagnostics, 160
 Example 6.2 Comparing Two Proportions, Difference, Relative Risk, Odds Ratio, 160
Advanced Tools: Loops, Matrices, Imbedded Documents, Folds, 163
Example 6.3 Multiple Logistic Regression, 164
Additional Resources, 168
Further Reading, 169
Complement B to Chapter 6: Bayesian Software, 169

7. Large Sample Posterior Distributions and Approximations 172

7.1 Introduction, 172
7.2 Large-Sample Posterior Distributions, 173
7.3 Approximate Evaluation of Bayesian Integrals, 176
 7.3.1 Lindley Approximation, 176
 7.3.2 Tierney–Kadane–Laplace Approximation, 179
 7.3.3 Naylor–Smith Approximation, 182
7.4 Importance Sampling, 184
Summary, 185
Exercises, 185
Further Reading, 186

PART III. BAYESIAN STATISTICAL INFERENCE AND DECISION MAKING 189

8. Bayesian Estimation 191

8.1 Introduction, 191
8.2 Univariate (Point) Bayesian Estimation, 191
 8.2.1 Binomial Distribution, 192
 Vague Prior, 192
 Natural Conjugate Prior, 193
 8.2.2 Poisson Distribution, 193
 Vague Prior, 193
 Natural Conjugate Prior, 194
 8.2.3 Negative Binomial (Pascal) Distribution, 194
 Vague Prior, 195
 Natural Conjugate Prior, 195
 8.2.4 Univariate Normal Distribution (Unknown Mean but Known Variance), 195
 Vague (Flat) Prior, 196
 Normal Distribution Prior, 197
 8.2.5 Univariate Normal Distribution (Unknown Mean and Unknown Variance), 198
 Vague Prior Distribution, 199
 Natural Conjugate Prior Distribution, 201
8.3 Multivariate (Point) Bayesian Estimation, 203
 8.3.1 Multinomial Distribution, 203
 Vague Prior, 204
 Natural Conjugate Prior, 204
 8.3.2 Multivariate Normal Distribution with Unknown Mean
 Vector and Unknown Covariance Matrix, 205
 Vague Prior Distribution, 205
 Natural Conjugate Prior Distribution, 208
8.4 Interval Estimation, 208
 8.4.1 Credibility Intervals, 208
 8.4.2 Credibility Versus Confidence Intervals, 209
 8.4.3 Highest Posterior Density Intervals and Regions, 210
 Formal Statement for HPD Intervals, 211
8.5 Empirical Bayes’ Estimation, 212
8.6 Robustness in Bayesian Estimation, 214
 Summary, 215
 Exercises, 215
 Further Reading, 216

9. Bayesian Hypothesis Testing 217
 9.1 Introduction, 217
 9.2 A Brief History of Scientific Hypothesis Testing, 217
 9.3 Problems with Frequentist Methods of Hypothesis Testing, 220
 9.4 Lindley’s Vague Prior Procedure for Bayesian Hypothesis
 Testing, 224
 9.4.1 The Lindley Paradox, 225
 9.5 Jeffreys’ Procedure for Bayesian Hypothesis Testing, 225
 9.5.1 Testing a Simple Null Hypothesis Against a Simple
 Alternative Hypothesis, 225
 Jeffreys' Hypothesis Testing Criterion, 226
 Bayes' Factors, 226
 9.5.2 Testing a Simple Null Hypothesis Against a Composite
 Alternative Hypothesis, 227
 9.5.3 Problems with Bayesian Hypothesis Testing with Vague
 Prior Information, 229
 Summary, 230
 Exercises, 231
 Further Reading, 231

10. Predictivism 233
 10.1 Introduction, 233
 10.2 Philosophy of Predictivism, 233
10.3 Predictive Distributions/Comparing Theories, 234
 10.3.1 Predictive Distribution for a Discrete Random Variable, 235
 Discrete Data Example: Comparing Theories Using the
 Binomial Distribution, 235
 10.3.2 Predictive Distribution for a Continuous Random
 Variable, 237
 Continuous Data Example: Exponential Data, 237
 10.3.3 Assessing Hyperparameters from Predictive Distributions, 238

10.4 Exchangeability, 238

10.5 De Finetti's Theorem, 239
 10.5.1 Summary, 239
 10.5.2 Introduction and Review, 239
 10.5.3 Formal Statement, 240
 10.5.4 Density Form, 241
 10.5.5 Finite Exchangeability and De Finetti's Theorem, 242

10.6 The De Finetti Transform, 242
 Example 10.1 Binomial Sampling Distribution with Uniform
 Prior, 242
 Example 10.2 Normal Distribution with Both Unknown
 Mean and Unknown Variance, 243
 10.6.1 Maxent Distributions and Information, 244
 Shannon Information, 244
 10.6.2 Characterizing \(h(x) \) as a Maximum Entropy Distribution, 247
 Arbitrary Priors, 251
 10.6.3 Applying De Finetti Transforms, 252
 10.6.4 Some Remaining Questions, 253

10.7 Predictive Distributions in Classification and Spatial and Temporal
 Analysis, 253

10.8 Bayesian Neural Nets, 254
 Summary, 257
 Exercises, 257
 Further Reading, 259

11. Bayesian Decision Making

11.1 Introduction, 264
 11.1.1 Utility, 264
 11.1.2 Concave Utility, 265
 11.1.3 Jensen's Inequality, 266
 11.1.4 Convex Utility, 266
 11.1.5 Linear Utility, 266
 11.1.6 Optimizing Decisions, 267
CONTENTS

11.2 Loss Functions, 267
 11.2.1 Quadratic Loss Functions, 268
 Why Use Quadratic Loss?, 268
 11.2.2 Linear Loss Functions, 270
 11.2.3 Piecewise Linear Loss Functions, 270
 11.2.4 Zero/One Loss Functions, 272
 11.2.5 Linex (Asymmetric) Loss Functions, 274

11.3 Admissibility, 275
 Summary, 276
 Exercises, 277
 Further Reading, 279

PART IV. MODELS AND APPLICATIONS 281

12. Bayesian Inference in the General Linear Model 283
 12.1 Introduction, 283
 12.2 Simple Linear Regression, 283
 12.2.1 Model, 283
 12.2.2 Likelihood Function, 284
 12.2.3 Prior, 284
 12.2.4 Posterior Inferences About Slope Coefficients, 284
 12.2.5 Credibility Intervals, 285
 12.2.6 Example, 286
 12.2.7 Predictive Distribution, 287
 12.2.8 Posterior Inferences About the Standard Deviation, 288
 12.3 Multivariate Regression Model, 289
 12.3.1 The Wishart Distribution, 289
 12.3.2 Multivariate Vague Priors, 290
 12.3.3 Multivariate Regression, 290
 12.3.4 Likelihood Function, 291
 Orthogonality Property at Least-Squares Estimators, 291
 12.3.5 Vague Priors, 292
 12.3.6 Posterior Analysis for the Slope Coefficients, 292
 12.3.7 Posterior Inferences About the Covariance Matrix, 293
 12.3.8 Predictive Density, 293
 12.4 Multivariate Analysis of Variance Model, 294
 12.4.1 One-Way Layout, 294
 12.4.2 Reduction to Regression Format, 294
 12.4.3 Likelihood, 295
 12.4.4 Priors, 295
 12.4.5 Practical Implications of the Exchangeability Assumption in
 the MANOVA Problem, 296
 Other Implications, 296
12.4.6 Posterior, 297
 Joint Posterior, 297
 Conditional Posterior, 297
 Marginal Posterior, 298
12.4.7 Balanced Design, 298
 Case of $p = 1$, 299
 Interval Estimation, 299
12.4.8 Example: Test Scores, 299
 Model, 299
 Contrasts, 301
12.4.9 Posterior Distributions of Effects, 301

12.5 Bayesian Inference in the Multivariate Mixed Model, 302
12.5.1 Introduction, 302
12.5.2 Model, 303
12.5.3 Prior Information, 305
 A. Nonexchangeable Case, 306
 B. Exchangeable Case, 306
12.5.4 Posterior Distributions, 307
12.5.5 Approximation to the Posterior Distribution of B, 309
12.5.6 Posterior Means for Σ, Σ_1, \ldots, Σ_c, 311
12.5.7 Numerical Example, 314
 Summary, 316
 Exercises, 316
 Further Reading, 318

13. Model Averaging

Merlise Clyde

13.1 Introduction, 320
13.2 Model Averaging and Subset Selection in Linear Regression, 321
13.3 Prior Distributions, 323
 13.3.1 Prior Distributions on Models, 323
 13.3.2 Prior Distributions for Model-Specific Parameters, 323
13.4 Posterior Distributions, 324
13.5 Choice of Hyperparameters, 325
13.6 Implementing BMA, 326
13.7 Examples, 326
 13.7.1 Pollution and Mortality, 326
 13.7.2 O-Ring Failures, 328
 Summary, 331
 Exercises, 332
 Further Reading, 334
14. Hierarchical Bayesian Modeling

Alan Zaslavsky

14.1 Introduction, 336
14.2 Fundamental Concepts and Nomenclature, 336
 14.2.1 Motivating Example, 336
 14.2.2 What Makes a Hierarchical Model?, 3337
 Multilevel Parameterization, 338
 Hierarchically Structured Data, 338
 Correspondence of Parameters to Population Structures, and
 Conditional Independence, 339
 14.2.3 Marginalization, Data Augmentation and Collapsing, 340
 14.2.4 Hierarchical Models, Exchangeability, and De Finetti's
 Theorem, 341
14.3 Applications and Examples, 341
 14.3.1 Generality of Hierarchical Models, 341
 14.3.2 Variance Component Models, 342
 14.3.3 Random Coefficient Models, Mixed Models, Longitudinal
 Data, 343
 14.3.4 Models with Normal Priors and Non-Normal
 Observations, 344
 14.3.5 Non-Normal Conjugate Models, 345
14.4 Inference in Hierarchical Models, 345
 14.4.1 Levels of Inference, 345
 14.4.2 Full Bayes' Inference, 346
 14.4.3 Priors for Hyperparameters of Hierarchical Models, 347
14.5 Relationship to Non-Bayesian Approaches, 348
 14.5.1 Maximum Likelihood Empirical Bayes and Related
 Approaches, 348
 14.5.2 Non-Bayesian Theoretical Approaches: Stein Estimation, Best
 Linear Unbiased Predictor, 349
 14.5.3 Contrast to Marginal Modeling Approaches with Clustered
 Data, 350
14.6 Computation for Hierarchical Models, 351
 14.6.1 Techniques Based on Conditional Distributions: Gibbs
 Samplers and Data Augmentation, 351
 14.6.2 Techniques Based on Marginal Likelihoods, 352
14.7 Software for Hierarchical Models, 352
Summary, 353
Exercises, 353
Further Reading, 356
15. Bayesian Factor Analysis

15.1 Introduction, 359
15.2 Background, 359
15.3 Bayesian Factor Analysis Model for Fixed Number of Factors, 361
 15.3.1 Likelihood Function, 361
 15.3.2 Priors, 362
 15.3.3 Joint Posteriors, 363
 15.3.4 Marginal Posteriors, 363
 15.3.5 Estimation of Factor Scores, 364
 15.3.6 Historical Data Assessment of F, 364
 15.3.7 Vague Prior Estimator of F, 364
 15.3.8 Large Sample Estimation of F, 365
 15.3.9 Large Sample Estimation of f_j, 366
 15.3.10 Large Sample Estimation of the Elements of f_j, 366
 15.3.11 Estimation of the Factor Loadings Matrix, 367
 15.3.12 Estimation of the Disturbance Covariance Matrix, 365
 15.3.13 Example, 368
15.4 Choosing the Number of Factors, 372
 15.4.1 Introduction, 372
 15.4.2 Posterior Odds for the Number of Factors: General Development, 376
 15.4.3 Likelihood Function, 377
 15.4.4 Prior Densities, 378
 15.4.5 Posterior Probability for the Number of Factors, 379
 15.4.6 Numerical Illustrations and Hyperparameter Assessment, 380
 Data Generation, 380
 Results, 381
 15.4.7 Comparison of the Maximum Posterior Probability Criterion with AIC and BIC, 382
15.5 Additional Model Considerations, 382
 Summary, 384
 Exercises, 384
 Further Reading, 385
 Complement to Chapter 15: Proof of Theorem 15.1, 387

16. Bayesian Inference in Classification and Discrimination

16.1 Introduction, 391
16.2 Likelihood Function, 392
16.3 Prior Density, 393
16.4 Posterior Density, 393
16.5 Predictive Density, 393
CONTENTS

16.6 Posterior Classification Probability, 395
16.7 Example: Two Populations, 396
16.8 Second Guessing Undecided Respondents: An Application, 397
 16.8.1 Problem, 397
 16.8.2 Solution, 397
16.8.2 Example, 399
16.9 Extensions of the Basic Classification Problem, 399
 16.9.1 Classification by Bayesian Clustering, 399
 16.9.2 Classification Using Bayesian Neural Networks and Tree-Based Methods, 400
 16.9.3 Contextual Bayesian Classification, 401
 16.9.4 Classification in Data Mining, 402
Summary, 402
Exercises, 403
Further Reading, 404

APPENDICES

Description of Appendices 407

Appendix 1. Bayes, Thomas, 409
 Hilary L. Seal

Appendix 2. Thomas Bayes. A Bibliographical Note, 415
 George A. Barnard

Appendix 3. Communication of Bayes’ Essay to the Philosophical Transactions of the Royal Society of London, 419
 Richard Price

Appendix 4. An Essay Towards Solving a Problem in the Doctrine of Chances, 423
 Reverend Thomas Bayes

Appendix 5. Applications of Bayesian Statistical Science, 449

Appendix 6. Selecting the Bayesian Hall of Fame, 456

Appendix 7. Solutions to Selected Exercises, 459

Bibliography 523

Subject Index 543

Author Index 553