Contents

1 Molten Zintl Alloys 1
 Willem van der Lugt and Peter Verkerk
 1.1 Introduction and some Terminology 1
 1.2 The Gradual Development of Stoichiometry in Non-Clustering Liquid Ionic Alloys 2
 1.3 Physical Properties and Detection of Liquid Zintl Compounds 3
 1.4 Neutron Diffraction Measurements and their Analysis: Introduction 7
 1.5 Neutron Diffraction; Zintl–Klemm Alloys 8
 1.6 Zintl–Klemm Alloys: Theoretical Contributions 11
 1.7 Structures of Alkali-Tl And Alkali-Ga Alloys 12
 1.8 Conclusions and Final Remarks 15

2 Structure and Bonding Around the Zintl Border 21
 Gordon J. Miller, Chi-Shen Lee and Wonyoung Choe
 2.1 Introduction 21
 2.2 Metals versus Nonmetals: Physical and Chemical Principles 23
 2.3 Elements at the Zintl Border 26
 2.4 Electron-counting Rules 28
 2.5 New Complex Compounds at the Zintl Border 35
 2.5.1 Left of the Zintl Border: From Hume-Rothery to Zintl 35
 2.5.2 Right of the Zintl Border: Unsaturated Bonding and Internal Redox Processes 43
 2.6 Future Directions and Summary 50

3 Structure Prediction and Determination of Crystalline Compounds 55
 J. Christian Schön and Martin Jansen
 3.1 Introduction 55
 3.2 General Approach to Structure Prediction 56
 3.2.1 Fundamentals 56
 3.2.2 Modular Approach 57
 3.2.3 Examples 58
3.3 Investigations of Restricted Landscapes 61
 3.3.1 Alternative Methods for Generation of Candidate Structures 61
 3.3.2 Molecular Crystals 62
 3.4 Structure Determination 65
 3.4.1 Restricted Exploration of the Energy Landscape 66
 3.4.2 Combined Optimization 67
 3.5 Concluding Remarks 68

4 Multivalent Cation Conductors 71
 Gin-ya Adachi and Nobuhito Imanaka
 4.1 Introduction 71
 4.2 Divalent Cation Conductors 72
 4.2.1 β-Alumina-type Structure 72
 4.2.2 $\text{M}^{2+}\text{Zr}_4(\text{PO}_4)_6$ 76
 4.2.3 YPO_4-based Compounds 84
 4.3 Trivalent Ion Conductors 85
 4.3.1 Trivalent Cation Conductors with β-Al_2O_3-Type Structures 85
 4.3.2 β-Al_2O_3-related Phases 89
 4.3.3 β-LaNb_3O_9 90
 4.3.4 $\text{Sc}_4(\text{WO}_4)_3$-Type Structures 92
 4.3.5 Phosphate-Based Trivalent Cation Conductors 104
 4.4 Tetravalent Cation Conductors 106
 4.4.1 Silicon Nitride 107
 4.4.2 Phosphate-Based Tetravalent Cation Conductors 107
 4.5 Conclusions 109

5 The Potential of Pentagonal Building Blocks: From Giant Ring-shaped to Spherical Polyoxometalate Clusters 113
 Leroy Cronin

6 Molybdenum Peroxo Complexes as Catalysts in Olefin Epoxidation 123
 Werner R. Thiel
 6.1 Introduction 123
 6.2 Mechanistic Fundamentals 126
 6.3 Pyrazolylpyridine Complexes 127
 6.3.1 Mechanistic Investigations 128
 6.3.2 Structure/Activity Relationships 131
 6.3.3 Ligand Fluxionality 133
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Syntheses of Rare Earth Organometallics, Organoamides, and Aryloxides from the Metals</td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>Glen B. Deacon and Craig M. Forsyth</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>139</td>
</tr>
<tr>
<td>7.2</td>
<td>Metal-based Syntheses</td>
<td>140</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Redox Transmetalation with Mercury Reagents</td>
<td>140</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Redox Transmetalation with Thallium(I) Reagents</td>
<td>142</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Redox Transmetalation/Ligand-Exchange</td>
<td>144</td>
</tr>
<tr>
<td>7.2.4</td>
<td>Synthesis of Lanthanoid Trichlorides</td>
<td>146</td>
</tr>
<tr>
<td>7.2.5</td>
<td>The Direct Reaction of Rare Earth Metals with Weak Protic Reagents at Elevated Temperatures</td>
<td>147</td>
</tr>
<tr>
<td>7.3</td>
<td>Conclusions</td>
<td>151</td>
</tr>
<tr>
<td>8</td>
<td>Enzyme Structures: Active Site Structural and Functional Aspects of Purple Acid Phosphatase and Catechol Oxidase</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>Annette Rompel, Carsten Gerdemann, Andreas Vogel, and Bernt Krebs</td>
<td></td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction: Aim and Purpose of Bioinorganic Chemistry</td>
<td>155</td>
</tr>
<tr>
<td>8.2</td>
<td>Purple Acid Phosphatases</td>
<td>155</td>
</tr>
<tr>
<td>8.2.1</td>
<td>The Crystal Structure of a Plant Purple Acid Phosphatase (kBAP)</td>
<td>156</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Containing a Dinuclear Iron-Zinc Center</td>
<td></td>
</tr>
<tr>
<td>8.2.3</td>
<td>Comparison of Mammalian and Plant PAP Structure</td>
<td>158</td>
</tr>
<tr>
<td>8.2.4</td>
<td>Reaction Mechanism</td>
<td>159</td>
</tr>
<tr>
<td>8.2.5</td>
<td>Physiological Role</td>
<td>160</td>
</tr>
<tr>
<td>8.3</td>
<td>Catechol Oxidase</td>
<td>160</td>
</tr>
<tr>
<td>8.3.1</td>
<td>The Crystal Structure of a Plant CO (ibCO) containing a Dinuclear Copper Center</td>
<td>161</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Comparison of the CO Structure with Different HC Structures</td>
<td>163</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Reaction Mechanism</td>
<td>164</td>
</tr>
<tr>
<td>8.3.4</td>
<td>Physiological Role</td>
<td>166</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>171</td>
</tr>
<tr>
<td>9</td>
<td>Aminotroponiminates as Ligands for Group 3 and Lanthanide Complexes – Coordination Chemistry and Catalysis</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>Peter W. Roesky</td>
<td></td>
</tr>
<tr>
<td>9.2</td>
<td>Ligand Synthesis</td>
<td>172</td>
</tr>
<tr>
<td>9.3</td>
<td>Metal Complexes</td>
<td>173</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Complexes of N,N’-Disubstituted Aminotroponiminates</td>
<td>173</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Complexes of Mono-bridged Bis-aminotroponiminates</td>
<td>176</td>
</tr>
<tr>
<td>9.4</td>
<td>Summary</td>
<td>179</td>
</tr>
</tbody>
</table>
 Carlo Floriani

 10.1 Topic of this Chapter 181
 10.2 Introduction 182
 10.3 The Synthesis and the Chemistry of Metal-alkylidene and Metal-alkylidyne Functionalities 183
 10.4 Reductive Cleavage of Dinitrogen to Nitrides, and of Carbon Monoxide to Carbides 188

11 Metal Carbonyl Cations and Their Derivatives – A New Class of Superelectrophiles 195
 Helge Willner and Friedhelm Aubke

12 Borylene Complexes 213
 Holger Braunschweig

 12.1 Introduction 213
 12.2 Bridged Borylene Complexes 213
 12.3 Terminal Borylene Complexes 216

13 Silaboranes 219
 Lars Wesemann

14 Carbaalanes – A New Class of Compounds Containing Clusters of Aluminium and Carbon Atoms 229
 Werner Uhl

 14.1 Introduction 229
 14.2 Synthesis of Carbaalanes 230
 14.3 Structures 233
 14.4 Spectroscopic Findings 237
 14.5 Quantum-chemical Calculations 239
 14.6 Chemical Reactivity 240
 14.7 Concluding Remarks 242

15 Molecular Aluminium and Gallium Subhalides 245
 Hansgeorg Schnöckel and Christoph Klemp

 15.1 Introduction 245
 15.2 Synthesis 246
 15.3 Products 247
 15.3.1 [MX]n Species 247
 15.3.2 M2X4 Species 248
15.3.3 M_3X_5 Species 250
15.3.4 M_4X_6 Species 251
15.3.5 M_5X_7 Species 251
15.3.6 $Al_{22}Br_{20}$ and $Al_{14}I_{16}R_6^{2-}$ Species 254
15.4 Conclusion 255

16 Recent Developments in the Chemistry of Covalent Main Group Azides 259
Wolfgang Fraenk and Thomas M. Klapötke

16.1 Introduction 259
16.2 Group 13 Azides 259
16.2.1 Boron Azides 259
16.2.2 Aluminium, Gallium, and Indium Azides 265
16.3 Group 14 Azides 267
16.3.1 Carbon Azides 267
16.3.2 Germanium Azides 268
16.4 Group 15 Azides 271
16.4.1 The N_5^+ Cation and Hydrogen Diazide 271
16.4.2 Arsenic Azides 272
16.4.3 Antimony and Bismuth Azides 273
16.5 Group 16 Azides 273
16.5.1 The Reaction between OF_2 and CsN_3 273
16.5.2 Tellurium Azides 275
16.6 Group 17 Azides 275
16.7 Update 276

17 Silicalix-[n]-phosphinines: sp2-Phosphorus Equivalents of CO Matrices 279
Nicolas Mézailles, François Mathey, and Pascal Le Floch

18 Using Dinitrogen as a Raw Material: Is there a Future? 285
Sandro Gambarotta

18.1 Introduction 285
18.2 Formation of NH_3 285
18.3 N_2 Reduction 287
18.4 Catalysis 288
18.5 Cooperative N_2 Reduction 290
18.6 Conclusion 293

19 Organoxenon Compounds 297
Wieland Tyrra and Dieter Naumann

19.1 Introduction 297
19.2 Evidence for Xenon–Carbon Compounds 298
19.3 Synthetic Methods for the Preparation of Organoxenon(II) Compounds 299
19.3.1 Preparation of Organoxenon(II) Fluoroborates from Organoboranes and Xenon Difluoride 299
19.3.2 Synthesis of Arylxenon(II) Trifluoromethanesulfonates through Electrophilic Aromatic Substitution Reactions 301
19.3.3 Direct Access to Xe(C₆F₅)₂ 304
19.3.4 Ligand Exchange Reactions of Fluorophenylxenon Compounds 306
19.3.5 Synthesis of Alkenylxenon Derivatives by Fluorination of Aryl xenon Compounds 307
19.3.6 Xenon(IV)-Carbon Compounds 308
19.4 Crystallographic and Spectroscopic Characteristics of Organoxenon Compounds 309
19.4.1 Crystallographic Data 309
19.4.2 NMR Spectra 311
19.4.3 Vibrational Spectra 311
19.4.4 Mass Spectra 311
19.5 Reactions of Organoxenon Compounds 312

Index 317