Contents

1 Introduction 1

2 A first look at zeta functions and heat traces 9
 2.0 Introduction 9
 2.1 Zeta functions in quantum field theory 9
 2.2 Statistical mechanics of finite systems: Bose-Einstein condensation 19
 2.3 Local versus global boundary conditions 20
 2.4 Concluding remarks 39

3 Zeta functions on generalized cones and related manifolds 41
 3.0 Introduction 41
 3.1 Scalar field on the three-dimensional ball 42
 3.2 Scalar field on the D-dimensional generalized cone 50
 3.3 Spinor field with global and local boundary conditions 59
 3.4 Forms with absolute and relative boundary conditions 65
 3.5 Oblique boundary conditions on the generalized cone 73
 3.6 Further examples on a related geometry 77
 3.7 Concluding remarks 85

4 Calculation of heat kernel coefficients via special cases 87
 4.0 Introduction 87
 4.1 Heat equation asymptotics for manifolds without boundary 88
 4.2 General form for Dirichlet and Robin boundary conditions 92
 4.3 Heat kernel coefficients on the generalized cone 101
 4.4 Determination of the general heat kernel coefficients 111
 4.5 Mixed boundary conditions 118
 4.6 Special case calculations for mixed boundary conditions 124
 4.7 Determination of the mixed heat kernel coefficients 133
 4.8 Oblique boundary conditions 142
 4.9 Leading heat equation asymptotics with spectral boundary conditions 155
 4.10 Summary of the results 166
 4.11 Further boundary conditions 174
 4.12 Concluding remarks 179

5 Heat content asymptotics 181
 5.0 Introduction 181