Contents

1. Introduction to Industrial Robots 1
 - Chapter Goals and Objectives 1
 - 1-1 Introduction 1
 - Career Spotlight 2
 - 1-2 History of the Industry 2
 - 1-3 Fifty-year-old Industry 5
 - 1-4 Integrated Systems—Meeting the External and Internal Challenges 7
 - External Challenges, 7
 - Internal Challenge, 10
 - Meeting the Internal Challenge, 11
 - 1-5 The Problem and a Solution 18
 - 1-6 Definition of Robotics and Computer-Integrated Manufacturing 19
 - 1-7 Manufacturing System Classification 21
 - Project, 21
 - Job Shop, 23
 - Repetitive, 23
 - Line, 23
 - Continuous, 23
 - 1-8 Robot Systems 25
 - Robot Hardware, 25
Mechanical Arm, 25
Production Tooling, 27
External Power Source, 27
Robot Controller, 29
Teach Stations, 30
ABB Controller Interface, 31

1-9 Some Basic Terms 32
1-10 Robot Safety Guidelines 42
Work Cell Safety Design Requirements, 43
Guidelines for Safe Robot Use, 43

1-11 Robot Standards 46
R15 Standards, 46
A15 Standards, 47

1-12 Summary 47
Questions 49
Problems 50
Projects 51

2 Robot Classification 53

Chapter Goals and Objectives 53
Career Spotlight 54

2-1 Introduction 54

2-2 Robot Arm Geometry 55
Cartesian Geometry, 55
Cylindrical Geometry, 58
Spherical Geometry, 60
Articulated Geometry, 63
Selective Compliance Articulated Robot Arm (SCARA), 66
Horizontally Base-jointed Arm, 66

2-3 Power Sources 67
Hydraulic Power, 67
Pneumatic Power, 70
Electric Power, 70

2-4 Drive Systems 73
Torque, 73
Belts, 74
Chains, 77
Automated Work Cells and CIM Systems 119

Chapter Goals and Objectives 119
Career Spotlight 120

3-1 Introduction 120

3-2 The CIM Implementation Process 121
Step 1: Assessment of Enterprise Technology, Human Resources, and Systems, 122
Step 2: Simplification—Elimination of Waste, 123
Step 3: Implementation with Performance Measures, 125
3-3 Making the CIM Process Work 129
3-4 Automated Production 130
3-5 Flexible Automation 132
3-6 Fixed Automation 137
 In-line Fixed Automation, 137
 Rotary-type Fixed Automation, 138
3-7 Work-cell Design Checklist 138
3-8 Implementing Automated Work Cells 139
 New versus Existing Production Machines, 139
 Fixed versus Flexible Automation, 140
3-9 System Troubleshooting and Problem Solving 141
 Introduction to Troubleshooting, 141
 Hardware versus Software Troubleshooting, 142
 Troubleshooting Techniques, 143
 Block Diagrams, 144
 Bracketing, 146
 Signal Flow, 147
 Signal Flow Analysis, 149
 Information Funneling, 150
 Symptoms and Use of System Data, 153
 Troubleshooting Sequence, 154
 Multiple Failures, 154
3-10 Summary 155
 Questions 156
 Problems 157
 Projects and Case Study Problems 158

4 End-of-Arm Tooling 160
 Chapter Goals and Objectives 160
 Career Spotlight 161
4-1 Introduction 161
4-2 Standard Grippers 162
 Gripping Force, 166
 Minimum Gripper Force, 168
4-3 Vacuum Grippers 171
 Lifting Capacity, 171
 System Components, 174
Vacuum Surfaces, 176
Vacuum Suckers, 176

4-4 Magnetic Grippers 177
4-5 Air-pressure Grippers 177
Gripping Force, 180
4-6 Special-purpose Grippers 182
4-7 Gripper Selection and System Intelligence 183
4-8 Special-purpose Tools 183
4-9 Robot Assembly 183
4-10 Compliance 184
Active Compliance, 186
Active Compliance Applications, 187
Passive Compliance, 188
4-11 Multiple End-effector Systems 191
Wrist Interface, 191
Multiple-gripper Systems, 192
4-12 Collision Systems 195
Breakable Link Devices, 195
Spring and Pneumatic Collision Devices, 196
4-13 Summary 197
Questions 198
Problems 198
Projects and Case Study Problems 200

5 Automation Sensors 202

Chapter Goals and Objectives 202
Career Spotlight 203

5-1 Introduction 203
Discrete Sensors, 204
Analog Sensors, 205

5-2 Contact Sensors 205
Discrete Devices, 205
Dogs, 207
Artificial Skin, 210

5-3 Noncontact Sensors 212
Proximity Sensors, 212
Inductive Sensor Operation, 217
Contents

5-4 Sensor Selection Checklist 236
5-5 Smart Sensor Systems 236
 DeviceNet Network, 236
5-6 Process Sensors 239
5-7 Troubleshooting Sensor Systems 239
 Troubleshooting Tips for Proximity Sensors, 241
 Troubleshooting Tips for Photoelectric Sensors, 243
5-8 Summary 245
 Questions 246
 Problems 247
 Projects and Case Study Problems 248

6 Work-Cell Support Systems 250
 Chapter Goals and Objectives 250
6-1 Introduction 250
 Career Spotlight 251
6-2 Machine Vision Systems 251
 Vision Standards, 252
 Vision System Components, 252
 Image Measurement, 256
 Image Analysis, 256
 Image Recognition, 258
6-3 Lighting for Machine Vision 259
 Selection of the Light Source, 259
 Lighting Techniques, 259
 Illumination Sources, 261
6-4 Material Handling 262
 Automated Transfer Systems, 262
 Automatic Storage and Retrieval Systems, 266
6-5 Part Feeding 268
 Gravity Feeders, 268
 Magazine Feeders, 269
 Tape Feeders, 269
 Waffle-tray Feeders, 269
 Vibratory Feeders, 271
6-6 Inspection 272
6-7 Automatic Tracking 272
6-8 Summary 275
Questions 276
Projects and Case Study Problems 277

7 Robot and System Integration 278
Chapter Goals and Objectives 278
Career Spotlight 279
7-1 Introduction 279
7-2 System Overview 281
Hardware Overview, 282
Software Overview, 282
7-3 Work-cell Architecture 283
Cell Controllers, 283
Cell Control Software Structure, 283
Work-cell Management Software, 284
7-4 Programmable Logic Controllers 285
PLC System Components, 285
Basic PLC System Operation, 286
7-5 Computer Numerical Control 289
7-6 Controller Architecture 290
Nonservo Robot Controllers, 290
Servo Robot Controllers, 292
7-7 Interfaces 295
Simple Sensor Interface, 295
Simple Sensor Interface Design, 296
Complex Sensor Interface, 298
Enterprise Data Interface, 300
7-8 An Integrated System 300
Machining Cell, 302
Assembly Cell, 302
Signal Types, 302
Work-cell Controller, 303
Programmable Logic Controller, 303
7-9 Summary 304
Questions 304
Projects and Case Study Problems 305
Chapter Goals and Objectives 306

8-1 Introduction 306
Career Spotlight 307

8-2 Work-Cell Controller Programming 308
Software Developed In-house, 309
Enabler Software, 309
OSI Solution, 310

8-3 Programming Sequential Cell Activity 311
PLC Programming, 311
Other Sequential Programming Options, 314

8-4 Robot Language Development 315

8-5 Language Classification 316
Joint-control Languages, 316
Primitive Motion Languages, 317
Structured Programming Languages, 318
Task-oriented Languages, 318

8-6 Robot Program Fundamentals 319
Translation or Programmed Points, 319
Programmed Statements, 321

8-7 Translation or Position Points for Servo Robots 322
Reference Frames, 322
Programming Servo Robot Translation Points, 324
Programming Nonservo Robot Translation Points, 329

8-8 Program Statements for Servo Robots 329
Basic Program Structure—Step 1, 329
Process Analysis—Step 2, 330
Tasks and Subtasks—Step 3, 330
Task Point Graph—Step 4, 331
System Variables—Step 5, 331
Write and Enter the Program—Step 6, 331
Teach the Translation Points—Step 7, 331
Test and Debug the Program—Step 8, 333
On-line and Off-line Programming, 333

8-9 Programming a Servo Robot 334
Command Modes, 335
Coordinate Systems, 335
9 Justification and Applications of Work Cells 345

Chapter Goals and Objectives 345

9-1 Introduction 345
Career Spotlight 346

9-2 Capital Equipment Justification 347
Return on Investment Method, 348
Cash Flow Method, 348
Time Value of Money, 348
Justifying Robotics Applications, 349
Justification Spreadsheet, 349

9-3 Automation Applications 350
Material Handling, 350
Machine Tending, 354
Assembly, 355
Process, 359
Welding, 359
Paint Spraying, 363

9-4 Summary 366
Questions 367
Problems 368
Projects and Case Study Problems 369

10 Safety 370

Chapter Goals and Objectives 370

10-1 Introduction 370
Career Spotlight 371

10-2 Safety Standards 371
Robot Systems and Integrated Work Cells, 372

Chapter Goals and Objectives 407

11-1 Introduction 407
 Career Spotlight 408

11-2 General Training 408
 General Training Program, 409

11-3 Operator Training 410

11-4 Maintenance Training 410

11-5 Team-based Manufacturing 411
 Description of a Self-directed Work Team, 411
 Making Work Teams Work, 412

11-6 Resistance 412

11-7 Organized Labor 413

11-8 Impact of 24-7 414

11-9 Summary 415
 Questions 416
 Projects and Case Study Problems 416

12 Work-Cell Design Case Study 417

Chapter Goals and Objectives 417
 Career Spotlight 417

12-1 Introduction 418

12-2 Company Profile 418

12-3 Introduction to CIM Automation at West-Electric 418
 West-Electric Automation Team, 419
 The First Meeting, 420

12-4 Turbine Blade Production 422
 Step 1: Raw Material Inspection, 423
 Step 2: Production of Slugs, 424
Appendix A: Hardware Specifications, 466

Appendix B: Internet Resources, 483
 Thomas Register, 484
 Web Search Engines, 484
 Standard Organizations, 484
 Robot Vendors, 484
 Automation Sensors, 484
 Automation Support Components, 485
 Programmable Logic Controllers, 485
 Work-cell Control Software, 485
 Material Handling Systems, 485

Appendix C: Justification Program, 486
Appendix D: Glossary 491

Index, 503