MODERN ELECTRICAL
COMMUNICATIONS
Theory And Systems

Associate Professor
of Electrical and Systems Engineering
Rensselaer Polytechnic Institute

Franz B. Tuteur, Ph. D.
Professor of
Engineering and Applied Science
Yale University

Contents

Preface xiii

1 Introduction 1
 1.1 Definitions 1
 1.2 Problems in Communication Theory 1
 1.3 A General Communication System 2
 1.4 Modulation 6
 1.5 Historical Review 8
 1.6 The Book 13
 References 15

2 Fourier Methods 16
 2.1 Introduction 16
 2.2 The Superposition Principle 17
 2.3 Linear System Response 19
 2.4 Periodic Signals 20
 2.5 Convergence 27
 2.6 Orthogonal Function Expansion 32
 2.7 Representation of Signals by Vectors 36
 2.8 The Fourier Integral 44
 2.9 Elementary Properties of the Fourier Transform 47
 2.10 Some Useful Fourier Pairs 53
 2.11 The Dirac Delta Function 58
 2.12 Applications of the Delta Function 61
 2.13 Time Functions with One-Sided Spectra 67
 2.14 Summary 72
 Problems 73
 References 80
3 Linear Circuits and Filters 81

3.1 Introduction 81
3.2 Input-Output Using Superposition 81
3.3 Differential Equations for Linear Time-invariant Systems 85
3.4 The Transfer Function 88
3.5 Input-Output 98
3.6 Ideal Linear Filters 103
3.7 Causal Filters 107
3.8 Realizable Low-Pass Filters 109
3.9 Active Filter Circuits 113
3.10 Frequency Transformations 120
3.11 Summary 124
Problems 126
References 132

4 Sampling and Pulse Modulation 134

4.1 Introduction 134
4.2 Implications of the Frequency Limitation 136
4.3 Practical Aspects of Sampling 144
4.4 Time-Division Multiplexing 149
4.5 Pulse Duration and Pulse Position Modulation 156
4.6 Pulse Code Modulation 161
4.7 Summary 177
Problems 177
References 183

5 Discrete System Theory 185

5.1 Introduction 185
5.2 Discrete Linear Systems 185
5.3 The Discrete Fourier Transform 191
5.4 Properties of the Discrete Fourier Transform 194
5.5 Pitfalls in the Use of the DFT 196
5.6 The Fast Fourier Transform 202
5.7 The Z Transform 206
5.8 The Inverse Z Transform 209
5.9 Relation Between the Z Transform and the DFT 212
5.10 Digital Filters 214
5.11 Nonrecursive (FIR) Filters 220
5.12 Fast Convolution 226
5.13 Summary 227
Problems 228
References 231

6 Amplitude Modulation Systems and Television 233

6.1 Introduction 233
6.2 Amplitude Modulation 235
6.3 Modulators 238
6.4 Detection of AM Waves 247
6.5 The Superheterodyne Receiver 253
6.6 The Superheterodyne Principle in Spectrum Analysis 256
6.7 Double-Sideband (DSB) 257
6.8 Single-Sideband (SSB) 261
6.9 Vestigial Sideband (VSB) 266
6.10 The Phase-Locked Loop 269
6.11 The Voltage-Controlled Oscillator (VCO) 272
6.12 Television (TV) 274
6.13 Bandwidth Considerations for TV 282
6.14 Structure of the Spectrum of a TV Wave 283
6.15 Color Television 285
6.16 Frequency-Division Multiplexing (FDM) 297
6.17 Summary 301
 Problems 301
 References 310

7 Angle Modulation 312
7.1 Introduction 312
7.2 Definitions 313
7.3 Resolution of Angle-Modulated Waves into Sinusoids 315
7.4 Narrowband Angle Modulation 321
7.5 Bandwidth Considerations for FM 324
7.6 Indirect Generation of FM: The Armstrong Method 330
7.7 Generation of FM by Direct Methods 334
7.8 FM Signals in Linear Networks 337
7.9 Demodulation of FM Signals 340
7.10 Interference in FM 350
7.11 Preemphasis and Deemphasis Filtering (PDF) 353
7.12 The FM Receiver 356
7.13 Summary 357
 Problems 357
 References 362

8 Elements of Probability 363
8.1 Introduction 363
8.2 Axiomatic Definition of Probability 366
8.3 Joint and Conditional Probabilities; Independence 368
8.4 Total Probability and Bayes’ Theorem 368
8.5 Bernoulli Trials 370
8.6 Further Discussion of the Binomial Law 372
8.7 The Poisson Law 373
8.8 Summary 374
 Problems 375
 References 377
9 Random Variables 378

9.1 Introduction 378
9.2 Probability Distribution Function 380
9.3 Probability Density Function (pdf) 381
9.4 Continuous, Discrete, and Mixed Random Variables 383
9.5 Conditional and Joint Distributions 384
9.6 Functions of Random Variables 387
9.7 A General Formula for Determining the pdf of a Function of a Single Random Variable 389
9.8 Averages 392
9.9 Moments 393
9.10 Moment-Generating and Characteristic Functions 394
9.11 Two Functions of Two Random Variables 400
9.12 Summary 402
Problems 402
References 407

10 Random Processes 408

10.1 Introduction 408
10.2 Definition of a Random Process 409
10.3 Statistics of a Random Process 412
10.4 Examples of Correlation Function Computations 415
10.5 The Power Spectrum 419
10.6 Input-Output Relations for Random Processes in Linear Systems 429
10.7 The Gaussian Random Process 432
10.8 The Narrowband Gaussian Process (NGP) 433
10.9 Gaussian White Noise 437
10.10 The Bilateral Clipper; Van Vleck’s Theorem 438
10.11 Noise in AM and Derived Systems 440
10.12 Noise in Angle-Modulated Systems 450
10.13 Summary 459
Problems 459
References 463

11 Signal Processing 465

11.1 Introduction 465
11.2 Estimation with an RC Filter 466
11.3 Mean-Square Estimation of Discrete Signals 469
11.4 Discrete Noise Models; Parameter Estimation 472
11.5 Mean-Square Estimation Using Adaptive Filters 478
11.6 Linear Detection of Signals: The Matched Filter 484
11.7 Optimum Receivers 488
11.8 Optimum Reception of Known Signals in Gaussian White Noise 496
11.9 Design of Optimum Receivers Using Orthogonal Signals 501
11.10 Binary Signals in Gaussian Noise; Signal Classes 503