CONTENTS

Preface xv
Preface to the First Edition xvii
Prologue: Macromolecules Around Us xix

Natural Macromolecules, xx
Man-Made Macromolecules, xx

1 Structure of Macromolecules 1

1.1 Concept of a Macromolecule, 1
1.2 Primary Structure—Covalent Bonds, 2
 1.2.1 Linear Polymers, 2
 1.2.1.1 Polymers with All-Carbon Backbones, 3
 1.2.1.2 Polymers with Heteroatoms in the Backbone, 9
 1.2.1.3 Polymers with Inorganic Backbones, 12
 1.2.2 Cyclolinear Polymers, 14
 1.2.3 Branched Polymers, 18
 1.2.4 Copolymers, 21
 1.2.4.1 Types of Copolymers, 22
 1.2.4.2 Some Important Copolymers, 23
 1.2.5 Isomerism of Polymer Chains and Tacticity, 24
 1.2.6 Nomenclature of Polymers, 28
 1.2.7 Macromolecular Networks, 31
 1.2.7.1 Loose Networks, 31
Contents

1.2.7.2 Dense Networks—Thermosets, 32
1.2.7.3 Two-Dimensional Networks, 35
1.2.8 Natural Macromolecules, 36
1.2.8.1 Polysaccharides, 37
1.2.8.2 Proteins and Polypeptides, 39
1.2.8.3 Nucleic Acids, 42
1.3 Higher Structure—Conformations, 45
1.3.1 Random Macromolecular Coils, 46
1.3.1.1 Short-Range Interactions, 49
1.3.1.2 Statistical Coils, 52
1.3.1.3 Long-Range Interactions, 53
1.3.1.4 Polyelectrolyte Effect, 56
1.3.2 Secondary Structure—Regular Conformations, 58
1.3.3 Tertiary Structure—Arrangement of Larger Segments, 61
1.3.4 Enzymes—Tertiary Conformations in Action, 62
1.4 Multimolecular Arrangements—Quaternary Structure, 64
1.4.1 Multiunit Proteins, 64
1.4.2 Double Helix of Nucleic Acids, 66
1.4.3 Genetic Coding and Reproduction, 68
1.4.4 Protein Synthesis, 69
1.4.5 Natural Supportive Structures, 71
1.5 Aggregates of Small Molecules, 71
1.5.1 Colloids, 72
1.5.2 Micelles, 75
1.5.3 Block Copolymer Micelles, 79
1.6 Molecular Weight, 80
1.6.1 Molecular Weight Averages, 81
1.6.2 Distribution of Molecular Weights, 84
1. A Suggestions for Further Reading, 90
1. B Review Questions, 91
1. C Derivations, 92
1. D Numerical Problems, 93

2 Techniques for Synthesis of Polymers

2.1 Polycondensation, 96
2.1.1 Carboxylic Acid Derivatives, 97
2.1.1.1 Reaction Mechanisms, 97
2.1.1.2 Cyclization Reactions, 101
2.1.1.3 Kinetics of Polycondensation, 102
2.1.1.4 Equilibrium; Distribution of Molecular Weights, 105
2.1.1.5 Gel Point; Three-Dimensional Structures, 108
2.1.1.6 Dendrimers and Hyperbranched Polymers, 110
2.1.2 Isocyanates, 115
2.1.3 Aldehydes, 119
2.1.4 Condensations Forming Cycles, 124
2.1.5 Siloxanes, 127
2.1.6 Epoxy Resins, 130
2.1.7 Miscellaneous Polycondensations, 131

2.2 Radical Polymerization, 135
2.2.1 Production of Radicals, Initiators, 135
2.2.2 Reactions of Radicals, 139
2.2.3 Reactivity of Radicals, 142
2.2.4 Kinetics of Radical Polymerization, 145
 2.2.4.1 Initiation, Propagation, and Termination, 145
 2.2.4.2 Rate of Polymerization and Molecular Weight, 149
 2.2.4.3 Chain Transfer, 157
 2.2.4.4 Inhibition and Retardation, 162
 2.2.4.5 Kinetics at High Conversions—Gel Effect, 164
2.2.5 Radical Copolymerization, 166
2.2.6 Thermodynamics of Radical Polymerization, 172
2.2.7 Living Radical Polymerization, 175
 2.2.7.1 Atom Transfer Radical Polymerization (ATRP), 176
 2.2.7.2 Nitroxide-Mediated Radical Polymerization, 177
2.2.8 Industrial Polymerizations, 178
 2.2.8.1 Suspension Polymerization, 179
 2.2.8.2 Precipitation Polymerization, 179
 2.2.8.3 Emulsion Polymerization, 180
 2.2.8.4 Cross-Linked Structures, 181

2.3 Ionic and Coordination Polymerization, 184
2.3.1 Anionic Polymerization, 184
 2.3.1.1 Ions in Nonpolar Media, 185
 2.3.1.2 Anionic Initiators, 187
 2.3.1.3 Initiation and Propagation, 189
 2.3.1.4 Living Polymers and Block Copolymers, 193
 2.3.1.5 Ring-Opening Polymerizations, 195
2.3.2 Cationic Polymerization, 198
 2.3.2.1 Cationic Initiators, 199
 2.3.2.2 Polymerization of Olefins, 200
 2.3.2.3 Living Cationic Polymerization, 203
 2.3.2.4 Polymerization of Aldehydes and Cyclic Monomers, 204
2.3.3 Coordination Polymerization, 205
 2.3.3.1 Ziegler–Natta Initiators, 206
 2.3.3.2 Metallocene Catalysts, 208
 2.3.3.3 Metathesis Polymerization, 214
 2.3.3.4 Group Transfer Polymerization (GTP), 218
 2.3.3.5 Miscellaneous Coordination Initiators, 220

2.4 Reactions on Macromolecules, 220
2.4.1 Reactions of Side Groups, 221
2.4.2 Cyclization Reactions, 222
3 Macromolecules in Solution

3.1 Thermodynamics of Macromolecular Solutions, 242
 3.1.1 Flory–Huggins Model, 244
 3.1.1.1 Low-Molecular-Weight Mixtures, 244
 3.1.1.2 Macromolecular Solutions, 248
 3.1.1.3 Chemical Potentials, 250
 3.1.2 Excluded-Volume Theories, 254
 3.1.2.1 Compact Molecules, 254
 3.1.2.2 Macromolecular Coils, 256
 3.1.3 Equation-of-State Theories, 261
 3.1.4 Phenomenological Approach, 269
 3.1.5 Anisotropic Solutions and Liquid Crystals, 271
 3.1.5.1 Types of Liquid Crystals, 272
 3.1.5.2 Liquid Crystalline Polymers, 275

3.2 Equilibrium Methods for the Study of Macromolecules in Solution, 277
 3.2.1 Osmometry, 279
 3.2.1.1 Macromolecular Solutions in Mixed Solvents, 284
 3.2.1.2 Osmometry of Polyelectrolytes, 288
 3.2.1.3 Technical Aspects of Osmometry, 291
 3.2.2 Equilibria in the Ultracentrifuge, 293
 3.2.2.1 The Ultracentrifuge, 295
 3.2.2.2 Sedimentation Equilibrium, 298
 3.2.2.3 Equilibrium in a Density Gradient, 305
 3.2.3 Phase Equilibria, 308
 3.2.3.1 Fractionation of Polymers, 318

3.3 Hydrodynamics of Macromolecular Solutions, 321
 3.3.1 Viscous Flow of Liquids, 322
 3.3.2 Particles Moving Through a Liquid—Frictional Coefficients, 326
 3.3.3 Particles Suspended in a Flowing Liquid—Viscosity Increase, 330
 3.3.4 Hydrodynamic Interactions, 332
 3.3.5 Hydrodynamics of Macromolecular Coils, 335
 3.3.6 Concentration Effects in Macromolecular Hydrodynamics, 340
 3.3.7 Orientation and Deformation of Particles in a Flowing Liquid, 343
3.4 Hydrodynamic Methods for the Study of Macromolecules in Solution, 346

3.4.1 Diffusion, 346
 3.4.1.1 Experimental Diffusimetry, 349
 3.4.1.2 Interpretation of Diffusion Coefficients, 351

3.4.2 Sedimentation Velocity, 352
 3.4.2.1 Homogeneous Solutes, 352
 3.4.2.2 Heterogeneous Solutes, 358
 3.4.2.3 Archibald Method, 359

3.4.3 Viscometry, 360
 3.4.3.1 Viscometers, 361
 3.4.3.2 Intrinsic Viscosity, 364
 3.4.3.3 Molecular Weight and Coil Dimensions, 365
 3.4.3.4 Unperturbed Dimensions, Thermodynamic Parameters, 367
 3.4.3.5 Branched Chains, 370
 3.4.3.6 Polydisperse Polymers, 370
 3.4.3.7 Concentration Dependence of Viscosity, 371
 3.4.3.8 Non-Newtonian Viscosity, 372

3.4.4 Flow Birefringence, 374
 3.4.4.1 Optical Properties of Dielectrics, 374
 3.4.4.2 Molecular Anisotropy, 376
 3.4.4.3 Birefringence of Systems Oriented by Flow, 377
 3.4.4.4 Birefringence and Stress, 382
 3.4.4.5 Experimental Arrangements, 383
 3.4.4.6 Interpretation of Flow Birefringence Data, 385

3.5 Light Scattering, 386

3.5.1 Scattering by a Single Small Isotropic Particle, 386
3.5.2 Light Scattered by an Anisotropic Particle, 390
3.5.3 Interference of Light Waves, 392
3.5.4 Scattering by Large Particles, 393
3.5.5 Scattering by Macroscopic Systems, 398
 3.5.5.1 Theory of Fluctuations, 400
 3.5.5.2 Scattering by Gases and Liquids, 401
3.5.6 Light Scattering by Polymer Solutions, 403
 3.5.6.1 Measurement of Molecular Weight and Size, 403
 3.5.6.2 Effect of Polydispersity, 406
 3.5.6.3 Polymers in Mixed Solvents, 406
 3.5.6.4 Turbidity, 408
3.5.7 Quasi-Elastic Light Scattering, 409
3.5.8 Experimental Arrangements, 411
3.5.9 Small-Angle X-Ray Scattering (SAXS), 413

3.6 Spectral Methods, 417

3.6.1 Ultraviolet Spectrophotometry, 417
3.6.2 Fluorescence, 418
3.6.3 Infrared Spectra, 419
CONTENTS

3.6.4 Nuclear Magnetic Resonance (NMR), 421
3.6.5 Mass Spectrometry, 425

3.7 Separation Techniques, 426
 3.7.1 Electrophoresis, 428
 3.7.1.1 Free Electrophoresis, 429
 3.7.1.2 Paper Electrophoresis, 430
 3.7.1.3 Gel Electrophoresis, 432
 3.7.1.4 Capillary Electrophoresis, 433
 3.7.1.5 Electrofocusing, 434
 3.7.1.6 SDS Electrophoresis, 435
 3.7.2 Gel Permeation Chromatography (GPC), 435
 3.7.2.1 Principles of GPC, 438
 3.7.2.2 Molecular Weight and Universal Calibration Curve, 440
 3.7.2.3 Molecular Weight Distribution, 443
 3.7.2.4 Critical Point GPC, 443
 3.7.2.5 Selection of Columns, 444
 3.7.2.6 Detectors Used in GPC, 445
 3.7.3 Field Flow Fractionation, 447
 3.7.4 Supercritical Fluid Chromatography, 449

3.8 Techniques for the Study of the Structure of Nucleic Acids, 449
 3.8.1 Polymerase Chain Reaction, 450
 3.8.2 Separation of DNA Fragments, 452
 3.8.2.1 Pulsed Field Gel Electrophoresis (PFGE), 452
 3.8.2.2 Southern Transfer Technique, 453
 3.8.2.3 DNA Profile Analysis, 454
 3.8.3 Sequencing of DNA Fragments, 455

3.A Suggestions for Further Reading, 456
 3.A.1 General Reading, 456
 3.A.2 Thermodynamics, 457
 3.A.3 Equilibrium Methods (Osmometry, Sedimentation Equilibrium, and Phase Equilibria), 458
 3.A.4 Hydrodynamics and Hydrodynamic Methods, 458
 3.A.5 Light Scattering and Spectral Methods, 458
 3.A.6 Separation Techniques, 459
 3.A.7 Techniques to Study the Structure of Nucleic Acids, 459

3.B Thermodynamics, 459
 3.B.1 Review Questions, 459
 3.B.2 Derivations and Numerical Problems, 460

3.C Osmometry, Sedimentation Equilibrium, and Phase Equilibria, 461
 3.C.1 Review Questions, 461
 3.C.2 Derivations and Numerical Problems, 462

3.D Hydrodynamics and Hydrodynamic Methods, 464
 3.D.1 Review Questions, 464

3.E Light Scattering, 467
CONTENTS

3.E.1 Review Questions, 467
3.E.2 Derivations and Numerical Problems, 468
3.F Spectral Methods, 470
3.F.1 Review Questions, 470
3.G Separation Methods, 471
3.G.1 Review Questions, 471
3.G.2 Derivations and Numerical Problems, 472
3.H Techniques to Study the Structure of Nucleic Acid, 473

4 Bulk Polymers

4.1 Properties of Bulk Polymers, 474
4.1.1 Stress and Strain, 476
4.1.2 Glassy Polymers, 479
4.1.3 Elastic Networks, 481
 4.1.3.1 Theory of Rubber Elasticity, 482
 4.1.3.2 Swelling of Gels, 488
4.1.4 Polymer Melts, 489
4.1.5 Viscoelastic Materials, 492
 4.1.5.1 Creep and Stress Relaxation, 493
 4.1.5.2 Dynamic Experiments, 498
4.1.6 Crystalline Polymers, 504
 4.1.6.1 Morphology of Crystalline Polymers, 506
 4.1.6.2 Mechanical Properties of Crystalline Polymers, 511
4.1.7 Multicomponent and Multiphase Materials, 512
 4.1.7.1 Plasticization of Polymers, 512
 4.1.7.2 Polymer Blends, 514
 4.1.7.3 Heterophase Materials, 516
4.1.8 Electrical and Optical Properties of Polymers, 519
4.1.9 Transport Through Polymers, 522
4.2 Techniques for the Study of Bulk Polymers, 525
 4.2.1 Mechanical Methods, 525
 4.2.2 Differential Scanning Calorimetry (DSC), 528
 4.2.3 Inverse Gas Chromatography (IGC), 531
 4.2.4 X-Ray Diffraction, 535
 4.2.5 Neutron Scattering, 539
4.3 Techniques for the Study of Polymer Surfaces, 542
 4.3.1 Optical Microscopy, 542
 4.3.2 Electron Microscopy, 543
 4.3.3 Atomic Force Microscopy (AFM) and Scanning Tunneling Microscopy (STM), 545
 4.3.4 Electron Spectroscopy for Chemical Analysis (ESCA), 547
4.A Suggestions for Further Reading, 550
4.B Study Questions, 552
4.C Numerical Problems, 554
5 Technology of Polymeric Materials

5.1 Fabrication of Polymers, 557
 5.1.1 Compounding and Mixing, 558
 5.1.2 Casting, 559
 5.1.3 Extrusion, 559
 5.1.4 Bubble Blown Film Extrusion, 561
 5.1.5 Cast Film Extrusion, 563
 5.1.6 Coating, 563
 5.1.7 Fiber Spinning, 564
 5.1.8 Calendering, 567
 5.1.9 Molding, 567
 5.1.10 Foam Fabrication, 570

5.2 Testing of Polymers, 571
 5.2.1 Mechanical Testing, 571
 5.2.2 Thermal Testing, 573

5.3 Barrier Properties of Polymers, 574
 5.3.1 Membrane Types, 575
 5.3.2 Membrane Preparations, 576
 5.3.2.1 Symmetric Porous Membranes, 576
 5.3.2.2 Asymmetric Membranes, 577
 5.3.2.3 Ion-Exchange Membranes, 579
 5.3.3 Membrane-Based Separation Processes, 580
 5.3.3.1 Reverse Osmosis and Filtration Techniques, 580
 5.3.3.2 Electrodialysis, 583
 5.3.3.3 Gas Separation, 583
 5.3.3.4 Pervaporation, 585
 5.3.4 Polymeric Devices for Drug Delivery, 588

5.A Suggestions for Further Reading, 590
5.B Review Questions, 591

Epilogue: Literature About Macromolecules

A. Textbooks About Macromolecules, 593
B. Monograph Series and Encyclopedias, 594
C. Handbooks and Reference Sources, 594
D. Macromolecular Journals, 595

Index

597