Limit Theorems for Markov Chains and Stochastic Properties of Dynamical Systems by Quasi-Compactness
TABLE OF CONTENTS

I. General facts about the method, purpose of the paper 1
 1. Limit theorems for Markov chains 1
 2. Stochastic properties of dynamical systems 2
 3. Historical background to the method 3
 4. Purpose of the paper 4

II. The central limit theorems for Markov chains 6
 1. The concept of quasi-compact operator 6
 2. Conditions $\mathcal{H}[m]$ and \mathcal{D}, notations \mathcal{N} 8
 3. Statements of the central limit theorems 11

III. Quasi-compact operators of diagonal type and perturbations 14
 1. Definition, properties 14
 2. A perturbation theorem 18

IV. First properties of Fourier kernels, application 23
 1. Properties of the Fourier kernels 23
 2. Central limit theorem : intermediate result 27

V. Peripheral eigenvalues of Fourier kernels 31
 1. Eigenvalues of $Q(t)$ of modulus 1 31
 2. Peripheral eigenvalues of $Q(t)$ for small $|t|$ 34

VI. Proofs of Theorems A, B, C 38
 1. Conditions $\mathcal{H}''[m]$. Central limit theorem (Theorem A) 38
 2. Development of the characteristic function 38
 3. Central limit theorem with a rate of convergence (Theorem B) 39
 4. Local central limit theorem (Theorem C) 41

VII. Renewal theorem for Markov chains (Theorem D) 43
 1. Statements 43
 2. Proof of Theorem VII.2 44

VIII. Large deviations for Markov chains (Theorem E) 49
 1. Statement of the main result 49
 2. Properties of the Laplace kernels, function c 50
 3. Logarithmic estimate : Theorem E-(i)-(ii) 52
 4. Probability of a large deviation : Theorem E-(iii) 54
 5. Additional statements 58
IX. Ergodic properties for Markov chains

X. Markov chains associated with Lipschitz kernels

1. General facts, contraction properties
2. Invariant distributions and quasi-compactness
3. Laplace kernels
4. Products of invertible random matrices
5. Products of positive random matrices
6. Autoregressive processes

XI. Stochastic properties of dynamical systems

1. Statements
2. τ-invariant distribution, relativized Markov kernel
3. Proofs of the limit theorems

XII. Expanding maps

1. Piecewise expanding maps of the interval
2. Subshifts and transfer operators

XIII. Proofs of some statements in Probability Theory

1. Example of a two state Markov chain
2. Proof of Lemma IV-5
3. Large deviations lemma

XIV. Functional analysis results on quasi-compactness

1. A sufficient condition for quasi-compactness
2. Proof of the perturbation theorem (Theorem III.8)

Generalization to the non-ergodic case, by L. Hervé

References

Indexes