Progress in

Ultra-short
Electromagnetic
Pulse Technology

A New Frontier in Physics

Jean-François Eloy
Contents

Foreword xi
Acknowledgements xv
List of symbols xvii
List of Greek symbols xxv
List of abbreviations and acronyms xxxi

1. Introduction 1
 1.1. Electromagnetic waves 2
 1.2. The concept of coherence 4
 1.3. Laser beam sources 9
 1.4. Laser–matter interaction 11
 1.5. Ultra-wideband ultra-short electromagnetic pulses 15
 1.5.1. Electromagnetic missile 16
 1.5.2. Fast-opening switch for time-gating 18
 1.5.3. Power microwave impulse generators 19
 1.5.4. Ultra-short X-ray pulse generation 20
 1.6. Synchrotron Radiation sources 21
 1.7. Applications of short electromagnetic wave interactions with matter ... 22
 1.8. Space–time domain and time–frequency approaches 28

2. Ultra-short electromagnetic pulse generation and interaction with matter 31
 2.1. Theoretical and analytical approach 31
 2.1.1. Dynamic approach to ultra-short pulse effects using Fourier analysis 32
 2.1.1.1. Electro-optical effects 37
Progress in ultra-short electromagnetic pulse technology

2.1.1.1. In the microwave frequency range 37
2.1.1.2. In the infrared, visible and VUV frequency range 39
2.1.1.3. In the X-ray frequency range 39
2.1.1.4. Generating ultra-short soft X-ray pulses of high-order harmonics 44
2.1.1.5. Ultra-short pulses of Synchrotron Radiation 45
2.1.1.6. Ultra-short pulses of Self-Amplification by Spontaneous Emission (SASE) 46
2.1.2. Alternative representations 46
2.1.2.1. Gabor time-localization 47
2.1.2.2. Wavelet method 48
2.1.2.3. Inverse symbolic method 48
2.1.2.3.1. Using Green’s function in the case of time-space localized sources 48
2.1.2.3.2. Mathematical and computational methods operating purely in the time domain 52
2.1.3. Analytical and numerical studies of particular cases of ultra-short pulse propagation 53
2.1.4. Principle of optical and X-ray pulse compression 54
2.1.4.1. In the first step 55
2.1.4.2. In the second step 56
2.2. Trends in instrumentation for ultra-short pulse generation and signal data processing 59
2.2.1. In the microwave range of frequencies 60
2.2.1.1. Opto-electronic devices for generation of ultra-short EM pulses 60
2.2.1.1.1. The Endfire Tapered Slot (ETS) antennae on dielectric substrates 64
2.2.1.1.2. The Exponentially Tapered Coplanar Strip (ETCS) antenna 65
2.2.1.1.3. The Equiangular Spiral Antenna 65
2.2.1.1.4. Broadband Logarithmically Periodic Antenna Structures 66
2.2.1.1.5. T-ray thin film emitter 67
2.2.1.2. Free space measurements in the time domain using an opto-electronically pulsed antenna .. 68
2.2.1.3. Propagation of δ-function pulses in lossy or lossy-less dispersive media .. 75
 2.2.1.3.1. Case of lossy-less dispersive media 77
 2.2.1.3.2. Case of lossy dispersive media 79
2.2.1.4. Data processing of ultra-wideband signals 80
2.2.2. In the visible–infrared frequency ranges 82
 2.2.2.1. Ultra-short laser pulse measurement by interferometric correlations .. 82
 2.2.2.2. Ultra-short laser pulse measurement by intensity correlation .. 84
2.2.3. In the X-ray range of frequencies 85
 2.2.3.1. Different physical processes of ultra-short X-ray pulse generation .. 85
 2.2.3.1.1. Multiple harmonic generation by interaction of high-power lasers with rare gases 85
 2.2.3.1.2. Self-Amplification of Spontaneous Emission (SASE) of radiation 87
 2.2.3.1.3. X-ray beams generated by laser-produced Plasmas [DAU 93] 90
 2.2.3.2. Methods of ultra-short X-ray pulse measurement: X-ray time-resolved spectroscopy 91
2.3. Applications ... 93
 2.3.1. Diagnostics for time-resolved measurements 93
 2.3.1.1. In the microwave and sub-millimetric range 93
 2.3.1.2. In the visible–IR frequency range 97
 2.3.1.3. In the X-ray field 100
 2.3.2. New design of ultra-short X-ray pulse generator for plasma studies or other fields 102
 2.3.3. Potential applications for dynamic studies in biology and biochemistry ... 106

 3.1. Nuclear fusion and laser-produced plasmas 111
 3.1.1. Fusion and energy: summary of the basic relationships 112
 3.1.1.1. Magnetic confinement fusion 114
 3.1.1.2. Inertial Electrostatic Confinement (ICE) fusion 114
3.1.1.3. Laser-driven Inertial Confinement Fusion (ICF) 115
3.1.2. Features of plasma and electromagnetic radiation 117
 3.1.2.1. Timescales and parameters 117
 3.1.2.2. Motion of charged particles through a laser-produced plasma ... 118
 3.1.2.3. Electromagnetic radiation and shock wave propagation to achieve inertial confinement by a laser 120
 3.1.2.4. Principle of inertial confinement by a laser 123
 3.1.2.4.1. Direct incidence on target 124
 3.1.2.4.2. Indirect incidence on target 125
3.1.3. Power lasers and their interactions 129
 3.1.3.1. Optical cavities for laser oscillators 129
 3.1.3.1.1. In the infrared and UV wavelength domains 129
 3.1.3.1.2. In the X-ray wavelength domain 131
 3.1.3.2. Optical pumping .. 132
 3.1.3.3. Solid state amplifier 134
 3.1.3.4. Chain .. 137
 3.1.3.5. Frequency converter 137
3.1.4. Target for the inertial confinement by laser plasma-produced X-rays ... 138
3.1.5. Laser chains and multi-armed laser facility 140
3.1.6. RX and laser-produced plasma diagnostics 143
3.1.7. Inertial confinement projects by national laser programmes .. 145
3.2. Ultra-short laser pulses and interactions with matter 149
 3.2.1. Upgraded petawatt lasers: lasers of the future 150
 3.2.2. Temporal aspect of ultra-short high-intensity laser interactions ... 151
 3.2.2.1. Ultra-short laser pulse interactions 152
 3.2.2.2. Ultra-short high-intensity laser interactions 156
3.2.3. Ultra-short laser–matter interaction applications in reduced energy scale .. 161
3.2.4. Advanced concepts of diagnostics for laser-produced plasma involving ultra-short X-ray pulse generators 165
3.2.5. Various other applications of small-scale laser–matter interactions .. 166
3.2.6. Laser-produced plasmas and SR sources 167
4. Temporal aspects for a Synchrotron Radiation source: interaction of ultra-short X-ray pulses with matter .. 169

4.1. Progress and trends in instrumentation and X-ray optics 171

4.1.1. New design of X-ray sources for the generation of ultra-short pulses ... 171

4.1.2. Possible chirp and compression of Synchrotron Radiation pulses ... 173

4.1.3. Time structure of the Synchrotron Radiation source at ESRF ... 177

4.1.3.1. Review of basic theoretical considerations concerning SR emission and propagation 177

4.1.3.2. Space–time dependence of both amplitude and phase of SR electric field generated by a relativistic electron beam deviated in a bending magnet dipole 180

4.1.3.3. Instrumentation for time-resolved spectroscopy applied to SR beam measurements 183

4.1.3.4. Summary of results of time–space lag measurements on the BM5 SR beamline at ESRF 187

4.1.3.5. Data processing method applied for time-resolved signal of SR X-rays ... 190

4.1.3.5.1. Phase lags for discrete X-ray photon energies delivered by a bending magnet at ESRF 191

4.1.3.5.2. Dependence of frequency–space phase lags from SR energies for different operating modes of storage ring at ESRF 193

4.1.3.5.3. Analytical approach to experimental results ... 194

4.1.4. New cross-correlation method for SR measurements with time-resolved spectroscopy .. 195

4.1.4.1. Principle of sampling time measurements for X-ray pulses ... 196

4.1.4.2. Optical chopper for hard X-ray beams ... 198

4.1.4.3. Proposed experimental set-up for X-ray application of cross-correlation principle 200

4.1.4.4. Fast detector features for X-ray pulses ... 201

4.2. X-ray temporal modulation for dynamic studies in condensed matter in biology, biochemistry and medicine 202

4.2.1. Instrumental aspects for Synchrotron Radiation sources 205
4.2.2. Expected applications: new fields of interest for SR

ultra-short pulses .. 209

4.2.2.1. In crystallography ... 210
4.2.2.2. In the physics of molecules 211
4.2.2.3. In nuclear physics of particles 211
4.2.2.4. In medicine .. 213

Conclusion ... 217
Glossary ... 219
References .. 222
Index .. 251