Symplectic Geometry

V. I. Arnol’d, A. B. Givental’

Translated from the Russian
by G. Wassermann

Contents

Foreword .. 4

Chapter 1. Linear Symplectic Geometry 5

§ 1. Symplectic Space 5
 1.1. The Skew-Scalar Product 5
 1.2. Subspaces 5
 1.3. The Lagrangian Grassmann Manifold ... 6

§ 2. Linear Hamiltonian Systems 7
 2.1. The Symplectic Group and its Lie Algebra ... 7
 2.2. The Complex Classification of Hamiltonians ... 8
 2.3. Linear Variational Problems 9
 2.4. Normal Forms of Real Quadratic Hamiltonians . 10
 2.5. Sign-Definite Hamiltonians and the Minimax Principle 11

§ 3. Families of Quadratic Hamiltonians 12
 3.1. The Concept of the Miniversal Deformation ... 12
 3.2. Miniversal Deformations of Quadratic Hamiltonians 13
 3.3. Generic Families 14
 3.4. Bifurcation Diagrams 16

§ 4. The Symplectic Group 17
 4.1. The Spectrum of a Symplectic Transformation ... 17
 4.2. The Exponential Mapping and the Cayley Parametrization 18
 4.3. Subgroups of the Symplectic Group 18
 4.4. The Topology of the Symplectic Group 19
 4.5. Linear Hamiltonian Systems with Periodic Coefficients 19
Symplectic geometry is the mathematical apparatus of such areas of physics as classical mechanics, geometrical optics and thermodynamics. Whenever the equations of a theory can be gotten out of a variational principle, symplectic geometry clears up and systematizes the relations between the quantities entering into the theory. Symplectic geometry simplifies and makes perceptible the frightening formal apparatus of Hamiltonian dynamics and the calculus of variations in the same way that the ordinary geometry of vector spaces reduces cumbersome coordinate computations to a small number of simple basic principles.

In the present survey the simplest fundamental concepts of symplectic geometry are expounded. The applications of symplectic geometry to mechanics are discussed in greater detail in volume 3 of this series, and its applications to the theory of integrable systems and to quantization receive more thorough review in the articles of A.A. Kirillov and of B.A. Dubrovin, I.M. Krichever and S.P. Novikov in this volume.

We would like to express our gratitude to Professor G. Wassermann for the excellent and extremely careful translation.