CLASSICAL MECHANICS
THIRD EDITION

Herbert Goldstein
Columbia University

Charles Poole
University of South Carolina

John Safko
University of South Carolina

Addison Wesley
San Francisco Boston New York
Capetown Hong Kong London Madrid Mexico City
Montreal Munich Paris Singapore Sydney Tokyo Toronto
Contents

1 • Survey of the Elementary Principles
1.1 Mechanics of a Particle 1
1.2 Mechanics of a System of Particles 5
1.3 Constraints 12
1.4 D'Alembert's Principle and Lagrange's Equations 16
1.5 Velocity-Dependent Potentials and the Dissipation Function 22
1.6 Simple Applications of the Lagrangian Formulation 24

2 • Variational Principles and Lagrange's Equations 34
2.1 Hamilton's Principle 34
2.2 Some Techniques of the Calculus of Variations 36
2.3 Derivation of Lagrange's Equations from Hamilton's Principle 44
2.4 Extension of Hamilton's Principle to Nonholonomic Systems 45
2.5 Advantages of a Variational Principle Formulation 51
2.6 Conservation Theorems and Symmetry Properties 54
2.7 Energy Function and the Conservation of Energy 60

3 • The Central Force Problem 70
3.1 Reduction to the Equivalent One-Body Problem 70
3.2 The Equations of Motion and First Integrals 72
3.3 The Equivalent One-Dimensional Problem, and Classification of Orbits 76
3.4 The Virial Theorem 83
3.5 The Differential Equation for the Orbit, and Integrable Power-Law Potentials 86
3.6 Conditions for Closed Orbits (Bertrand's Theorem) 89
3.7 The Kepler Problem: Inverse-Square Law of Force 92
3.8 The Motion in Time in the Kepler Problem 98
3.9 The Laplace–Runge–Lenz Vector 102
3.10 Scattering in a Central Force Field 106
3.11 Transformation of the Scattering Problem to Laboratory Coordinates 114
3.12 The Three-Body Problem 121
Contents

7.5 1-Forms and Tensors 289
7.6 Forces in the Special Theory; Electromagnetism 297
7.7 Relativistic Kinematics of Collisions and Many-Particle Systems 300
7.8 Relativistic Angular Momentum 309
7.9 The Lagrangian Formulation of Relativistic Mechanics 312
7.10 Covariant Lagrangian Formulations 318
7.11 Introduction to the General Theory of Relativity 324

8 ■ The Hamilton Equations of Motion 334
8.1 Legendre Transformations and the Hamilton Equations of Motion 334
8.2 Cyclic Coordinates and Conservation Theorems 343
8.3 Routh's Procedure 347
8.4 The Hamiltonian Formulation of Relativistic Mechanics 349
8.5 Derivation of Hamilton's Equations from a Variational Principle 353
8.6 The Principle of Least Action 356

9 ■ Canonical Transformations 368
9.1 The Equations ofCanonical Transformation 368
9.2 Examples of Canonical Transformations 375
9.3 The Harmonic Oscillator 377
9.4 The Symplectic Approach to Canonical Transformations 381
9.5 Poisson Brackets and Other Canonical Invariants 388
9.6 Equations of Motion, Infinitesimal Canonical Transformations, and Conservation Theorems in the Poisson Bracket Formulation 396
9.7 The Angular Momentum Poisson Bracket Relations 408
9.8 Symmetry Groups of Mechanical Systems 412
9.9 Liouville's Theorem 419

10 ■ Hamilton–Jacobi Theory and Action-Angle Variables 430
10.1 The Hamilton–Jacobi Equation for Hamilton’s Principal Function 430
10.2 The Harmonic Oscillator Problem as an Example of the Hamilton–Jacobi Method 434
10.3 The Hamilton–Jacobi Equation for Hamilton’s Characteristic Function 440
10.4 Separation of Variables in the Hamilton–Jacobi Equation 444
10.5 Ignorable Coordinates and the Kepler Problem 445
10.6 Action-angle Variables in Systems of One Degree of Freedom 452
Contents

10.7 Action-Angle Variables for Completely Separable Systems 457
10.8 The Kepler Problem in Action-angle Variables 466

11 Classical Chaos 483

11.1 Periodic Motion 484
11.2 Perturbations and the Kolmogorov–Arnold–Moser Theorem 487
11.3 Attractors 489
11.4 Chaotic Trajectories and Liapunov Exponents 491
11.5 Poincaré Maps 494
11.6 Hénon–Heiles Hamiltonian 496
11.7 Bifurcations, Driven-damped Harmonic Oscillator, and Parametric Resonance 505
11.8 The Logistic Equation 509
11.9 Fractals and Dimensionality 516

12 Canonical Perturbation Theory 526

12.1 Introduction 526
12.2 Time-dependent Perturbation Theory 527
12.3 Illustrations of Time-dependent Perturbation Theory 533
12.4 Time-independent Perturbation Theory 541
12.5 Adiabatic Invariants 549

13 Introduction to the Lagrangian and Hamiltonian Formulations for Continuous Systems and Fields 558

13.1 The Transition from a Discrete to a Continuous System 558
13.2 The Lagrangian Formulation for Continuous Systems 561
13.3 The Stress-energy Tensor and Conservation Theorems 566
13.4 Hamiltonian Formulation 572
13.5 Relativistic Field Theory 577
13.6 Examples of Relativistic Field Theories 583
13.7 Noether’s Theorem 589

Appendix A Euler Angles in Alternate Conventions and Cayley–Klein Parameters 601

Appendix B Groups and Algebras 605

Selected Bibliography 617
Author Index 623
Subject Index 625