PRACTICAL APPLICATIONS OF RADIOACTIVITY
AND NUCLEAR RADIATIONS

An introductory text for engineers, scientists, teachers and students

G. C. LOWENTHAL
University of New South Wales

P. L. AIREY
Australian Nuclear Science and Technology Organisation

CAMBRIDGE UNIVERSITY PRESS
Contents

List of illustrations page xvii
List of tables xxii
Foreword xxiii
Preface xxv

Chapter 1: Atoms, nuclides and radionuclides 1

1.1 Introduction 1
1.1.1 Radioactivity, from the 1890s to the 1990s 1
1.1.2 On the scope and content of this text 3
1.1.3 Joining a large scale enterprise 4
 Nuclear power and nuclear radiation applications 4
 Figures from Japan 4
 The role of research reactors 5

1.2 An historic interlude: from atoms to nuclei 5
1.2.1 When atoms ceased to be atoms 5
1.2.2 The atomic nucleus 7

1.3 Nuclei, nuclear stability and nuclear radiations 8
1.3.1 The birth of isotopes 8
1.3.2 Mass–energy conversions and the half life 9
1.3.3 From natural to man-made radioisotopes 11
1.3.4 The role of the neutron-to-proton ratio 13
1.3.5 An introduction to properties of radiations emitted during radioactive decays 15
1.3.6 Another nuclear radiation: the neutron 17
1.4 Activation processes
1.4.1 Nuclear fission reactors
1.4.2 Thermal neutron activations
1.4.3 Activation and decay
1.4.4 Other activation processes

The production of neutron-poor radionuclides

Positron emitters for nuclear medicine

1.5 Short and long half lives and their uses
1.5.1 Generators for short half life radionuclides
1.5.2 Isomeric decays with applications to nuclear medicine
1.5.3 Radionuclides with very long half lives
1.5.4 The energetics of decays by alpha and beta particle emissions

1.6 Parent half lives and daughter half lives
1.6.1 Three cases
1.6.2 Decay chain calculations
1.6.3 Transient and secular equilibrium

Chapter 2: Units and standards for radioactivity and radiation dosimetry and rules for radiation protection

2.1 Introduction

2.2 Units and standards of radioactivity
2.2.1 A summary of their characteristics
2.2.2 The curie and the becquerel
2.2.3 Secondary standards and secondary standard instruments
2.2.4 In-house standards

2.3 Radioactivity standards
2.3.1 Comments on their production and their purpose
2.3.2 The international dimension of radioactivity standards

2.4 Radiation dosimetry for radiation protection
2.4.1 Absorbed dose limitations
2.4.2 Units for exposure, absorbed and equivalent dose
2.4.3 Weighting factors, w_R and w_T
3.4.4 Photon attenuation, an overview
3.4.5 Attenuation equations for narrow beam geometry
3.4.6 Photon attenuation measurements using μ_m

3.5 Pulse height spectra due to alpha particles and gamma rays
3.5.1 The response of detectors
3.5.2 Alpha particle spectra
3.5.3 Gamma ray spectra

3.6 Electron capture (EC), gamma rays and conversion electrons
3.6.1 EC decays and their use as quasi-pure gamma ray emitters
3.6.2 The internal conversion process

3.7 The role of mass energy in determining nuclear decays
3.7.1 Neutron-poor radionuclides
3.7.2 Positron decay and positron tomography
3.7.3 Multi gamma ray emitters
3.7.4 Three-pronged decays

3.8 Bremsstrahlung
3.8.1 Its origin
3.8.2 Bremsstrahlung intensities

3.9 Fluorescent radiations
3.9.1 Fluorescent X rays
3.9.2 Inner shell transitions
3.9.3 Auger electrons and fluorescent yields

Chapter 4: Nuclear radiations from a user's perspective

4.1 The penetrating power of nuclear radiations

4.2 Radioactive sources
4.2.1 Radionuclides and their decay schemes
4.2.2 Source making and counting procedures
 Laboratory equipment
 Procedures for making thin sources
4.2.3 Sealed sources
4.2.4 Liquid scintillation counting to minimise source self-absorption
4.3 Gamma ray applications 101
4.3.1 The role of electronic instruments 101
4.3.2 NIM bin and portable equipment 103
4.3.3 Comments on instrumentation and its supply 104

4.4 Gamma ray counting with NaI(Tl) detectors 106
4.4.1 Further comments on NaI(Tl) detectors 106
 NaI(Tl), an inorganic scintillation detector 106
 Selected characteristics of integral assemblies 106
 Total efficiencies and peak-to-total ratios 107
4.4.2 Integral counting 108
4.4.3 Peak counting 110
4.4.4 Precautions to avoid errors due to Compton scatter 110

4.5 Corrections and precautions, part 1 113
4.5.1 A summary 113
4.5.2 Dead time corrections 113
4.5.3 Pulse pile-up, random and coincidence summing 114
 Randomly occurring effects 114
 Coincidence summing 116
4.5.4 Decay corrections 117

4.6 Corrections and precautions, part 2 117
4.6.1 Unwanted radiations, a summary 117
4.6.2 Radioactive parents and daughters 117
4.6.3 Radionuclidic impurities 118
4.6.4 The gamma ray background 119
4.6.5 The alpha and beta particle background 121

Chapter 5: Ionising radiation detectors 123

5.1 Radiation detectors, a summary 123

5.2 Characteristics of ionisation detectors 123
5.2.1 Saturation currents and gas multiplication 123
5.2.2 Three saturation chambers 124
5.2.3 Parallel plate and cylindrical chambers 126

5.3 Proportional and Geiger–Müller counters 126
5.3.1 Thin wire counters 126
 Operating principles 126
Contents

Ion multiplication by collision 128

5.3.2 The Geiger–Müller counter 130
5.3.3 The proportional counter 131

The proportional region 131

Unsealed 4π windowless proportional counting 132

Alpha and beta particle counting 132

5.4 Other detectors and detection methods 132

5.4.1 A matter of emphasis 132
5.4.2 Liquid scintillation (LS) counting 133

Introduction 133

Quenching agents 133

Comments on LS counting procedures 135

5.4.3 Microcalorimetry for routine activity measurements 136

Counting decays with thermal power 136

Microcalorimetry for nuclear radiation applications 136

5.4.4 Neutron detection for scientific and industrial applications 138

An overview 138

Proportional counting 138

Measurements using high-intensity neutrons 139

5.5 An introduction to semiconductor detectors 139

5.5.1 A few historical highlights on energy spectrometry 139
5.5.2 Characteristics of germanium and silicon detectors 140
5.5.3 Lithium drifted and high-purity germanium detectors 143
5.5.4 Further comments on silicon detectors 143
5.5.5 Detectors made from crystals of semiconducting compounds 144
5.5.6 Energy resolution 145
5.5.7 A postscript on semiconducting detectors 146

Chapter 6: Radioactivity and countrate measurements and the presentation of results 147

6.1 An introduction to radioactivity measurements 147
6.1.1 Problems 147
6.1.2 A role for secondary standard instruments 148

6.2 Comments on the preparation of radioactivity standards 149
6.2.1 Problems with beta particle emitters 149
6.2.2 Accurate radioactivity measurements

6.3 \(4\pi\gamma\) pressurised ionisation chambers
- 6.3.1 Introduction
- 6.3.2 Two types of \(4\pi\gamma\) pressurised ionisation chambers
- 6.3.3 Dose calibrators
- 6.3.4 General purpose pressurised ionisation chambers
 - Their role as precision instruments
 - Activity calibrations
 - The calibration graph

6.4 Gamma ray spectrometers and gamma ray spectrometry
- 6.4.1 Towards multi gamma ray spectrometry
- 6.4.2 Escape peaks
- 6.4.3 Energy calibrations
- 6.4.4 Energy resolution
- 6.4.5 Full energy peak efficiency calibration
 - Introduction
 - Preparatory procedures
 - The calibration
- 6.4.6 Secondary standard instruments: strong and weak points

6.5 Results, part 1: collecting the data
- 6.5.1 Five components for a complete result
- 6.5.2 Errors and uncertainties

6.6 Results, part 2: Poisson and Gaussian statistics
- 6.6.1 A first look at statistical distributions
- 6.6.2 The Poisson distribution
- 6.6.3 Gaussian statistics
- 6.6.4 Confidence limits

6.7 Other characteristics of results and statistical tests
- 6.7.1 Count rates and their combination
- 6.7.2 Tests for accuracy and consistency
 - Accuracy
 - Consistency
- 6.7.3 Tests for randomness

6.8 Moving on to applications
Chapter 7: Industrial applications of radioisotopes and radiation

7.1 Introduction

7.1.1 A change of emphasis
7.1.2 An overview of industrial applications

Summary

Optimisation and control of processes in industrial plant
Plant diagnostics
Testing and inspection of materials
Composition and structure of materials
Modification and syntheses of materials
Environmental applications

7.2 Scientific and industrial applications of gamma rays

7.2.1 Applications employing gamma ray attenuation

Nucleonic gauges
Level gauges
Optimum choice of the radioactive source
Density gauges
Mineral processing
Coastal engineering
Radiography
Computerised tomography (CT)
Column scanning
On-line measurement of ash in coal

7.2.2 Applications based on gamma ray backscatter

Backscatter gauges
Borehole logging using backscattered \(\gamma \) rays

7.2.3 Applications based on X ray fluorescence

Introduction
X ray fluorescence analysis
Portable X ray fluorescence gauges
Applications to the mineral processing industry

7.3 Scientific and industrial applications of beta particles and electrons

7.3.1 Attenuation of beams of beta particles and electrons

Applications in paper manufacture

7.3.2 Industrial applications of beta particle backscatter

7.3.3 Special applications: electron microscopy
7.4 Scientific and industrial applications of neutrons

7.4.1 Comments on work with neutrons and neutron doses 211

7.4.2 Industrial applications of neutron sources 211

- **Neutron sources**
- **Neutron moderation**
- **Neutron backscatter gauges**
- **Neutron moisture meters**
- **Borehole logging with neutrons**
- **Neutron radiography**

7.4.3 Neutron diffraction 219

7.4.4 Neutron activation analysis (NAA)

- **An overview**
- **Prompt neutron activation analysis**
- **Instrumented neutron activation analysis**
- **Other comments**

7.5 Scientific and industrial applications of protons and alpha particles 222

7.5.1 Introduction 222

7.5.2 Multi element analyses 222

7.5.3 Thin layer activation 223

7.5.4 Smoke detectors 224

7.6 Scientific and industrial applications of the absorption of radiation 224

7.6.1 The chemical effects of radiation 224

7.6.2 Radiation chemistry of aqueous solutions 226

- **Basic processes**
- **Chemical dosimetry**

7.6.3 Industrial applications of high-energy radiation 228

- **Introductory comment**
- **Radiation induced polymerisation**
- **Effects of high-energy radiation on polymers**

7.6.4 Radiation sterilisation 230

- **Introduction**
- **Sterilisation of disposable medical products**
- **Other applications**

7.6.5 Food irradiation 231

Chapter 8: Application of tracer technology to industry and the environment 232
8.1 Introduction

8.1.1 Radiotracers come on the scene

8.1.2 Radiotracers: their advantages and their problems

- The advantages of radiotracers, a summary
- Radiation safety

8.1.3 The evolution of radiotracer applications

- Early examples of tracer applications
- Recent advances

8.2 Tracer applications in the field

8.2.1 The general concept of the radiotracer experiment

8.2.2 Choice of the optimum radiotracer: general considerations

- Introduction
- Water tracing
- Sand and sediment tracing
- Industrial tracing

8.2.3 Isotope injections

8.2.4 Tracer detection and monitoring in the field

- Field monitoring systems
- The role of scattered radiation in the monitoring of radiotracers
- Accurate field measurements

8.3 Applications of tracer technology to flow studies

8.3.1 General principles

- Introduction
- Residence time distribution (RTD)
- Mean residence time (MRT)
- Complete mixing

8.3.2 Flow rate measurements: an overview

8.3.3 Flow rate measurements: transit time techniques

- Pulse velocity method
- Correlation methods

8.3.4 Flow rate measurements: tracer dilution methods

- Introduction
- Tracer injection at a constant rate

8.3.5 Flow rate measurements: total sample method

- Principle of the method
- Case study: gas flow rate measurement
Contents

Optimising accuracy 253

8.3.6 Flow rate measurements: total count method 254
8.3.7 Residence time distribution 255
8.3.8 Residence time distribution: idealised plug flow 255
8.3.9 Residence time distribution: idealised stirred flow 257

Stirred flow 257

An example from the gold extraction industry 258
8.3.10 A comment on modelling complex flows 258

8.4 Industrial applications of tracers: case studies 260
8.4.1 Introduction 260
8.4.2 Fluidised catalytic cracking unit 260
8.4.3 Radiotracers in the iron and steel industry 262
8.4.4 Inventories 263

Accurate measurements of activity ratios 263
Mercury inventories 264

8.5 Conclusions 265

Chapter 9: Radionuclides to protect the environment 267

9.1 Introduction 267

9.2 The investigation of environmental systems 272
9.2.1 Numerical modelling 272
9.2.2 Applications of radioisotopes 278

9.3 Environmental applications of radioisotopes 279
9.3.1 Introduction 279
9.3.2 River flow measurements 279

The total sample method using tritium 279
The total count method 281
9.3.3 Studies of the dispersion of contaminants 284

Competition for environmental resources 284
Dispersion of contaminants 284
An analytical treatment of dispersion 286
9.3.4 A case study: sewage dispersion 286
9.3.5 Applications of tracer techniques to sediment and sand tracing 289

Measurements of migration rates 289
Contents

Coastal engineering demonstrations 289
Detector calibration 292
Suspended sediment gauges 293

9.4 Applications of naturally occurring radioisotopes 294

9.4.1 Man-made versus environmental radioisotopes 294

9.4.2 Erosion studies 294

- *A new use for caesium-137* 294
- *Procedures and applications* 295
- *An interesting result* 297
- *Other techniques* 297

9.4.3 Groundwater 298

- *Introduction* 298
- *Groundwater resource evaluation* 298
- *Locations of recharge areas* 299
- *The dating of underground water* 300
- *Accelerator mass spectrometry* 301

9.4.4 Oceanography 301

9.5 Nuclear waste disposal 302

9.5.1 The need for complete isolation 302

9.5.2 Natural analogues 303

- *Multi-barrier systems* 303
- *A natural analogue of the leaching of fission products from spent fuel* 303

9.5.3 Regulatory requirements 304

9.6 Summary and conclusions 304

Appendices

1. Glossary of technical terms 306
2. A selection of references to texts on health physics and radiation protection 311
3. Comments on the availability of nuclear data on the Internet 312
4. Application of tracer techniques to fluid dynamics 315
5. Dispersion processes 320

References 323
Index 331